EVOLUTION OF ELECTRIC FIELD INDUCED POLAR MICROREGIONS IN PLZT CERAMICS

M.KNITE, A.KAPENIEKS, and A.STERNBERG Institute of Solid State Physics, University of Latvia, Kengaraga iela 8, 226063 Riga, Latviau Republic / Europe

ABSTRACT

An experimental study of electric field controlled birefringence and light scattering in hot-pressed PLZT 8.5/65/35 at vavelength 0.425 - 5.56 µm is reported. The diameter of electric field induced polar microregions vs field intensity is determined.

DIELECTRIC POLARISATION

In coarse graine (4 - 6 μm) hot-pressed optically transpatent PLZT 8.5/65/35 dielectric polarization P vs temperature decreases rapidly at 17 $^{\circ}$ C. At the temperature 21 $^{\circ}$ C a double dielectric hysteresis icop P(E), polarisation vs electric field E is observed (Fig.1).

FIGURE 1 PLZT 8.5/65/35 polarisation P vs electric field hysteresis loop. $T = 21^{\circ}$ C. 1. $E_{max} \le E_{max} \ge E_{k_1}$.

FIGURE 2 Birefringence Δn vs electric field E of different temperatures. $\lambda = 5.56$ µm. 1 = 25 9 C, 2 = 40 9 C, 3 = 60 9 C, 4 = 80 9 C.

At the field intensity $E > E_{k_1} = 6.8$ kV/cm a ferroelectric phase is induced, a following decrease of E reverts to the non-ferroelectric state at $E < E_{k_2} = 1.6$ kV/cm. It corresponds to the quasiparaelectric-ferroelectric phase transition [1].

BIREFRINGENCE

In order to eliminate the light scattering and depolarization the measurements of birefringence $\Delta n(E)$ were carried out using a CO cw laser ($\lambda = 5.56~\mu m$). At room temperature we observed (Fig.2) an anomalous $\Delta n(E) \sim E^4$ at 4 < E < 6 kV/cm. We suppose that it is due to the increase of the amount of field-induced ferroelectric phase according to

$$\Delta \mathbf{n} = \mathbf{v} \cdot \Delta \mathbf{n}_{SD} + 0.5 \mathbf{n}^3 \mathbf{r} \mathbf{v} \mathbf{E} + 0.5 \mathbf{n}^3 \mathbf{R} (1 - \mathbf{v}) \mathbf{E}^2$$
 /I/

where \mathbf{v} — volume concentration of polar phase, $\Delta \mathbf{n}_{SP}$ — spontaneous birefringence, \mathbf{r} and \mathbf{R} — electrooptic coefficients, \mathbf{n} — refractive index.

FIGURE 3 Spectra of the extinction coefficient β for PLZT 8.5/65/35 at different values of the electric field E. 1 - E = 4 kV/cm, 2 - 5 kV/cm, 3 - 6 kV/cm. Temperature 23 °C. Optical aperture 4.10⁻³ rad. Circles - experiment, curve - calculation according to /3/.

FIGURE 4 Electric field E dependence of polarised microregions diameter a - 1, volume concentration of polar phase v - 2 (determined from scattering data) and 3 (determined from birefringence data), concentration of the pola sed o microregions N_c - 4.

SCATTERING

The values of the extinction coeff lient β determined by scattering were measured vs the light wave length λ at different constant values of E \leq E $_{k_1}$ (Fig. 3). The experimental value of β was calculated from :

$$I = I_0 \exp(-\beta d)$$
 /2/

where I_O is the intensity of transmitted light at E=0. I is the intensity of transmitted light at E>0, and cl is the sample thickness.

To explain the scattering behavior we use the Usov-Shermergor relationship /3/ [2,3]. for light scattering in heterogeneous dielectrics. We suppose the scattering on polarized microregions to be expessed by

$$\beta = \frac{4\pi v (1-v) \Delta n_{sp}^{2}}{\lambda n^{2}} \cdot \left[\frac{\lambda}{4\pi a} - \frac{16\pi^{2} a^{3}}{\lambda^{3} (1+4\pi^{2} a^{2}/\lambda^{2})} \right]$$

$$-\frac{\lambda}{8\pi^2 a} \ln(1 + \frac{16\pi^2 a^2}{\lambda^2})] /3/$$

The diameter of microregions a and volume concentration of ferroelectric phase v change vs E is shown in Fig. 4. The amount of microregions per cm³ Np is calculated from a and v. We have obtained both the increase of microregion diameter and the concentration of ferroelectric phase with E. The number of polarized microregions vs E shows the increase up to E = 4.8 kV/cm which is followed by a drop as E > 4.8 kV/cm.

REFERENCES

- 1. M. Yokosuka, M. Marutake. Jap. J. Phys. 25, 981 (1986).
- A. A. Usov, G.D. Shermergor. Soviet J. Theor. Phys. 48, 6, 1132 (1978) (in Russian).
- M. Knite, A. Kapenieks, A. Sternberg, and M. Livins. Perroelectrics, 90, 71 (1989).