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GENERAL DESCRIPTION OF WORK 

Topicality of problem. Nowadays optimisation is a very important branch of research. 
Its particular tasks are multicriterial optimisation, search for the Pareto -optimal set, 
optimisation of multimodal functions, and optimisation of noisy or dynamically changing 
functions. At the same time the speed of computing operations increases and so does the size of 
the computer memory which gives the opportunity for effective implementation of resources 
demanding and time demanding algorithms for finding the solution with sufficient speed. 

Genetic algorithms perform the search process not at one point of the parameter space, but 
at several points at once. Genetic algorithms use operators which are probabilistic. It means 
that although initial populations can be identical, all other populations in every trial would be 
different. The chance of individual (object) survival till the next generation depends on its 
fitness compared to the average fitness of the population. 

The random features of genetic algorithms make them adaptive to an objective junction if 
its value changes in time dynamically. Though classical genetic algorithm has certain 
disadvantages, which cause extremely bad impact on optimisation process in certain tasks. One 
of such drawbacks is premature convergence (rapid convergence to local optimum). It is caused 
by assimilation process when moderate and good solutions, which are represented in 
population in majority, assimilate the best solutions which are very few due to the 
peculiarities of objective function. The main aim of this research paper is to study this 
particular problem and its impact on optimisation process. 

Goals and tasks of the research. The employable aim of this study is to create a genetic 
algorithm which is applicable to optimisation of multimodal functions. The indirect aim of the 
research is to develop a sub-class of genetic algorithms which are specially intended for 
optimisation of multimodal functions. 

The optimisation task of this paper is formulated as follows: 

To maximize a function    f (x1 , x2 ….. xn) ,  where every xi is in boundaries: 

  ai  �   x1  �   bi 

for some restrictions ai and bi . 

To create such genetic algorithms, one has to solve the following problems: 

1. To examine genetic algorithms as generators of new solutions. To create a 
program for such a generator. 

2. To explore an analogy between binary genetic algorithms and real genetic 
algorithms.  To explore an analogy of real crossover operator and binary 
crossover  operator.   To   compare real and  binary mutation   operators.   To 
investigate the usage of binary code and Gray code in genetic algorithms. 

3. To investigate various crossover operators of genetic algorithms. To observe 
and compare the impact of various crossover strategies on optimisation process 
and premature convergence. 

4. To investigate premature convergence and its impact on maximum search for 
different functions with one global maximum. To observe the difference in 



population behaviour in cases when the maximum lies in the centre of search space and 
in cases when it does not. 

5. To explore the performance of genetic algorithms in task of search for 
maximum of multimodal function. To create a genetic algorithm which does not 
show premature convergence like a classical genetic algorithm does. 

6. To investigate optimisation problems in cases when objective function contains 
global maximum domains. To create algorithms applicable to optimisation of 
such functions. 

7. To create a genetic algorithm which is applicable to tasks of multicriterial 
optimisation. To compare multicriterial optimisation, using maxi-min and maxi 
ma* strategies and not using any decision strategies at all. 

8. To formulate a new sub-class of genetic algorithms as a model of artificial 
selection. To find out possible exploitation of both natural selection models and 
artificial selection models. 

9. To elaborate software for real genetic algorithms and their application to 
optimisation of real functions. 

10. To create software for real genetic algorithms and their application to 
searching of Pareto optimal solutions in case of multicriterial optimisation. 

Object and subject of the research. The object of the research is evolutionary algorithms. 
The subject of the research is optimisation of functions using real genetic algorithms. 

Research hypotheses 

1. Classical genetic algorithm is not able to fmd a global maximum of multimodal 
function 

2. In task of optimisation of multimodal function new genetic operators (such as 
coupling) and new strategies must be used. 

3. It is possible to create a genetic algorithm which finds diverse solutions in 
Pareto set or multi-maximum domain so that they are distributed in all the set 
uniformly. 

Methods of the research. In the thesis, the following research methods were used: algebra 
and calculus, discrete mathematics, set theory, statistics, genetic algorithms, decision making 
methods, methods of artificial intelligence, software for statistics SPSS, and software for statistics 
MathCad. 

Scientific novelty of work. The thesis contains an analysis of the behaviour of genetic 
algorithms, which is based on both experimental results and theoretical conclusions. It can be 
used to create new genetic algorithms. 

hi this research a "multilayer genetic algorithm" has been created, which is more effective for 
tasks of optimisation of multimodal function than a classical genetic algorithm. The coupling 
operator, which is based on arranging of solutions according to their fitness value, is an original 
idea for reduction of premature convergence. 



In this research a "restricted genetic algorithm" has been created, which provides 
certain diversity of solutions in case of several (finite number of) solutions or in case of infinite 
number of solutions. The idea of arranging solutions according to their parameter values and 
including them into certain subpopulations can be regarded as a model of artificial selection. 

Theoretical value. In the research a new approach to the behaviour analysis of genetic 
algorithms is offered that uses statistical package SPSS. Also, two-parameter test functions, 
which allow comparison of premature convergence of genetic algorithms, are offered. 

The exploration of the behaviour of the modified algorithms leads to the further 
investigation of algorithms as the suggested genetic algorithms are based on a new theoretical 
approach. The new idea relates to the strategy of crossover: in order to prevent premature 
convergence and to provide diversity of solutions, objects with similar parameter values must 
be crossed over. Techniques for coupling (those of similar parameters) can be various, and 
dividing the population into several subpopulations depending on the value of their 
parameter values is one of the techniques, while coupling according to the fitness value is other 
one. 

Practical value 
1. Software program "Rgenalg" was developed. It will be used for further 

experiments. Also, it will be used to prepare illustrations for students. The 
program parameters are the genetic algorithm parameters, and its output 
product is its database with experimental results. The data shows all the 
information of the population in certain (fixed) generation, i.e. moment of 
time. The program cannot be regarded as the one, which should serve for 
commercial goals and be sold in the market. 

2. The results of the research were presented to students, and some of the 
experiments performed have been used as an illustrative material for lecture 
course "Evolutionary genetic algorithms" 

3. The description files of test functions hi the MathCad package can serve as a 
basis for creation of new functions. 

The approbation of work 
The results of the research were presented to the audience of scientists at the following 

conferences: 

1. 40. RTU studentu zinatniska un tehniska konference, 1999-gada 26 - 30. 
aprflis (Riga, Latvija) 

2. Computational    Intelligence:    Theory    and    Applications;    International 
Conference; Proceedings/ 6th Fuzzy Days Dortmund, Germany, May 25-28, 
1999 (Dortmund, Germany) 

3. "The Second International Conference on Soft and Intelligent Computing. 
Budapest, Hungary May 25-28,1999" (Budapest, Hungary) 

4. "The 2nd International Conference Environment. Technology. Resources, 
June 25-27,1999." (Rezekne, Latvija) 

5. Starptautiska konference "Baltijas Regiona Valstu Integfacijas Problemas Ceja 
uz Eiropas Savienlbu", Rezekne, Latvija 2000.gada 2.-3.marts (Rezekne, 
Latvija) 



6. "KES'2000"    /Fourth    International    Conference    on    Knowledge-Based 
Intelligent   Engineering   Systems   &   Allied   Technologies,   University   of 
Brighton, UK, 30, 31 August, 1 September 2000 (Brighton, U.K.) 

7. The Second International conference "Simulation, Gaming, Training and 
Business Process Reengineering in Operations RTU September 8-9, 2000" 
(Riga, Latvia) 

8. ES2000, the Twentieth SGES International Conference on Knowledge Based 
Systems and Applied Artificial Intelligence, Cambridge, December llth-13th, 
2000 (Cambridge, U.K.) 

9. "International   Conference   on   Computational   Intelligence.   Theory   and 
Applications: 7 Fuzzy Days,  Dortmund, Germany,  October  1-3, 2001" 
(Dortmund, Germany) 

10. RTU 43 Starptautiska Zinatniska konference, Riga, 2OO2.gada lO.oktobris - 
14.oktobris, apaklsekcija "Informacijas tehnologija un vadlbas zinatne" (Riga, 
Latvija) 

Publications. The results of the research are represented in ten published papers, 
performed by the author independently and in co-authorship. Seven of the papers are 
published abroad. 

Personal contribution. All the results of the research described in the dissertation 
are obtained by the author via unaffiliated research. 

The structure and volume of dissertation. The dissertation consists of five Chapters 
and conclusion, Table of Contents, Bibliography and an appendix. The main text of the research 
is presented on 218 pages and illustrated with 204 pictures and 73 tables. The list of references 
includes 21 entry. 

BRIEF CONTENT OF WORK 

Chapter 1 describes the basic principles of the genetic algorithms. The genetic 
algorithms are stochastic iterative algorithms and they can be described by three basic 
steps, common to these methods (see "New Ideas in Optimisation" by David Come, 
2000): 

Step 1 Begin: generate and evaluate initial a set of solutions S, consisting of candidate 
solutions 

Step 2 Operate: create a set of new solutions S' by making randomised changes to some 
selected members of S 

Step 3 Renew: randomly replace some members of S with members of S' and then 
(unless some terminating condition is met) return to step 2. 

Chapter 1 tells that existing stochastic iterative methods can be divided into two large 
classes: local search and population-based search. In case of local search one current solution 
and its neighbour solutions are considered. In case of population-based search a whole 
population of diverse solutions is maintained. Such methods are known as "evolutionary 
algorithms". 

Chapter 1 also describes how the canonical genetic algorithm appeared as the model of 
the evolutionary theory of Darwin. An assumption is made that any real solution (phenotype) 
is encoded within some particular combination of genes (called genotype) which was 
represented as a string of symbols. The heredity was imagined 



as maintenance of certain sub-strings of symbols for the future generations. The 
variation of beings was explained by random changes (mutations) of the genes caused 
by accidental impacts. 

There is a short description of canonical genetic algorithm and its block diagram 
in Chapter 1. 

Further, genetic algorithm as a generator of new solutions is discussed. The 
problem of human limited creativeness is explained and some experiments to solve 
this problem by means of genetic algorithms are described. 

Chanter 2 proposes region-based crossover which generates offspring into 
a region delimited by parameter values of their parents (see Fig. 1). The disadvantages 
of binary encoding of real parameters are discussed (Goldberg, 1989). The idea of a 
real genetic algorithm as analogy of the binary one (Wright, 1991) is shown. 

Chapter 2 shows how the binary code and the Gray code can be used in genetic 
algorithms. 

Chapter 2 interprets real crossover as an analogue of crossover of binary strings 
(Wright, 1991). This real crossover is called .'.'.combinatorial crossover" in the paper, 
because two sub-strings of real parameters are combined in a new string, describing a 
new solution. The description of a random change of a randomly chosen parameter is 
shown as an analogue of mutation in a binary string (Wright, 1991) afterwards. 

Then next the description of region-based crossover follows. The author shows 
an illustration of two-parameter space where one of the parents has parameter values 
(2.5; 0.15), but the other one has parameter values {3.7; 0.4). In Fig. 1 we can see that 
the children of both parents would be generated randomly in the region delimited by 
parameter values of their parents. The author considers such a crossover strategy as a 
model of crossover of living beings, for example, baby hair colour if the baby is of a 
blond mother and a dark-hair father can be in various colourings from blond till dark. 
The author also explains that region-based crossover does not need encoding and 

decoding, because the real parameters can be used directly. 
The author sees the parameter values of a child solution as parameter values of 

one of its parents, perturbed in the direction of the other parent. 

 
Fig.1. The region of the children to be randomly generated in 
the area delimited by parameter values of their parents 

The main advantages of the region-based crossover are: 



1. The space is searched not at discrete points which are n sixteenth (n/16) or n 
sixty-fourth (n/64) of the space size in the direction of a certain parameter 
axis, bait in continuous space with the assigned precision; 

2. The algorithm gets simpler (it isn't precision-dependent any more); 
3. The economy of resources is achieved, because the binary coding and 

decoding is not needed. 
4. The region-based crossover does not create infeasible or illegal children. 

The region-based crossover is compared with combinatorial crossover through both 
single trials (randomly chosen) and series of 18 trials (the mean of population fitness and the 
mean of the best fitness is compared). The mutation in both cases means creating a new 
parameter value for one of parameters which is generated as a random number in the interval 
[Xn,jn ; xfflax]. Mutation is only applied if both parents are copies of the same solution, i.e. 
mother=father. Then one of the parents is left unchanged while the other one and both their 
children go through the mutation of one parameter. 
     In Chapter 2 the diagonal crossover (when the children are generated at the random 

point of the line connecting both parents) is discussed. It is compared with the arithmetic 
crossover (when children are generated at the points, dividing the same line in proportion 1:3 
and 2:3.)- The trial with arithmetic crossover approves the previous studies (Wright, 1991), 
which demonstrates that the arithmetic crossover is more effective than the combinatorial 
crossover in many optimisation problems. 

In Chanter 3 the author proposes a multilayer genetic algorithm to search for the 
maximum of multimodal functions. 

At the beginning of the chapter the drawbacks of classical genetic algorithm are 
mentioned: 

1. The genetic algorithm can find a local optimum instead of global one. 
2. The possibility of successful optimisation lies in the characteristics of the 

objective function as well as hi the operators of the genetic algorithm and its 
parameters. 

3. If the objective function has more than one global optimum, the genetic 
algorithm will either find only one of them or show premature convergence. 

4. If the objective function has a region of global optimums (infinite number of 
optimums), then the classical genetic algorithm will find only one solution 
belonging to the region (instead of finding many diverse solutions, all of them 
being global). Or possibly, the classical genetic algorithm may end the search 
process in premature convergence. 

Next in Chapter 3 the classical genetic algorithm with region-based crossover is described. 
After diat the behaviour of the classical genetic algorithm in the task of optimisation 

of multimodal runction is explored. The premature convergence is observed. 
Then the coupling operator is proposed to diminish premature convergence of classical 

genetic algorithm. 
The phenomenon of premature convergence is illustrated in Fig. 2(b), where two cross-

sections of the function depicted in Fig. 2(a) are shown. One can see a region of fine fitness level 
of y=l .5866 on the cross section with X2=0.63 when the parameter Xi values are in range [-0.2; 
0.2]. Although the first population always contains solutions 

 



near global raaximums with y=1.874 , predominance of the solutions in the local maximum 
always causes the assimilation of the first ones. 

Fig.2 Objective function (a) and Premature convergence of classical 
genetic algorithm to the areas of fine fitness which can be explained by 
predominance of fine solutions, which causes assimilation of the best 
ones (b) 

The hypothesis about premature convergence is stated as follows: The premature convergence 
diminishes if free crossover is infringed by ranging the solutions according to their fitness 
value (in its descending direction). Then the first best solution is coupled for crossover with 
the second one, the third is coupled 

 

 



with the fourth one, etc. That strategy can only be used if similar objective function fitness 
values are mapped to similar parameter values. 

Further in Chapter 3 the multilayer algorithm is described. The algorithm can be brought 
to the following steps: 

1) generate the initial population randomly (consisting, say, of 200 solutions); 
2) calculate the fitness value of every solution Y; 
3) save the results; 
4) arrange solutions in the descending sequence of Y. To assign couple numbers 

so that the first two (best) solutions have a couple number equal to 1, the next two 
solutions have a couple number equal to 2 and so on; 

5) cross-over (the region-based crossover, see Fig. 1) parents (solutions with the 
same couple number) twice, to obtain two children. In case of both parents being 
copies of the same solution, mutate the one of the parents and both children. The 
mutation  is performed  by re-generating one  of the parameter values   (chosen 
randomly) according to uniform distribution in the whole range of the solution space; 

6) calculate fitness value Y for every solution; 
7) calculate survival probability SELPROB i (with which it will be selected for 

 
 

 
 
8) calculate   cumulative   probability   CUMPROBi   for   i-th   solution   as 

CUMPROB i -1,+SELPROB i : 
9) perform roulette wheel selection ( 200 times ); 
10) check if the final condition is met (for example, if 100 iterations has been 

performed). If it is not, then go back to the step 3, otherwise end the procedure; 

Further in Chapter 3, an example with the multilayer genetic algorithm is shown. The 
task is to find the maximum of the "stool leg" function (see Fig.3, case a and equations (1), (2) 
and (3)) with the population size = 8. 

The parameters of the experiment are the following: Population_Size=8, the terminating 
condition is Loop_Count=7, crossover probability is 1 and children number for one couple is 
2 (every couple has two children), crossover type is "region-based crossover", function type is 
"stool leg" function, type of the algorithm is "multilayer genetic", the parameter values of the 
solution space: 

-0.5 �  x1 �  0.5       -0.5 �  x2  �  0.5 

Further in Chapter 3 the initial population of the experiment is shown. Its every parameter 
value is a randomly generated number belonging to the interval  ]-0.5; 0.5], The initial 
population is depicted in Table 1. 
 

 

the next generation) for every solution as 

 



The column title "X1" denotes parameter x1 , column title "X2" denotes parameter x2 , 
column title "Y" denotes function value, but "GENERATION" denotes the number of the current 
generation. 

Further in this example let's assume that two iterations of the algorithm have been 
performed and we will follow the execution of the third iteration of multilayer genetic 
algorithm. All the data were documented from a real experiment. 

In Table 2 the third population is shown. It differs from the initial population in limited 
diversity of solutions, because the solutions of this generation are copies of the few solutions 
with the highest fitness value. 

The third population Table 2 
  

Next in Chapter 3 "step 4" of the multilayer genetic algorithm is shown. The solutions 
are arranged in the descending sequence of Y. For every two neighbour solutions (starting from 
the top) the same number of couple is assigned. The roles "mother" and "father" do not show 
any particular meaning for the algorithm, and they are added just to make it easier to figure out 
the parents of every "family". 

The third population, already arranged, is shown in Table 3. 

The third population, arranged Table 3 

 

Further in Chapter 3 the 5th step of multilayer genetic algorithm is shown. After crossing the 
first two parents, children as two their copies are obtained, because both "Mother" and "Father" 
are copies of the same solution (see Table 4). That leads to mutation of one of "Mother's" 
parameters. As random number Rand_num<0.5 .therefore the parameter x1 of "Mother" is 
going to be mutated. It is generated as a random number in range ]-0.5; 0.5] and x1 = - 0.37 is 
obtained. Then the Y value of the "Mother" is recalculated, and y = 2.32 is obtained (see Table 
4). The same mutation operator is applied to both children of Couple 1. 

 



The children of the second couple are generated in the following way: The parameters 
x1 of both parents delimit range ]-0.07; 0.11], and the x1 value of the child is generated as a 
random number in the range. In similar way, the x2 value of the child is generated as a random 
number in the range ]0.01; 0.09]. For the first child the random numbers are x1=0.03 and 
x2=0.08, but for the second child they are x1 = - 0.07 and x2 = 0.03 (see table 4). The values 
of Y are calculated (step 6 of the algorithm) according to equations (1), (2) and (3). 

Formation of the children of the third Table4 
generation in the region crossover 

 

Next the survival probability for every solution should be calculated (step 7). To 
do that, the sum of all the function values has to be calculated: 

 

After that  the survival probability or selection probability SELPROB  is 
calculated. For the solution in the third row of Table 4 we have: 

 

Now, the cumulative probability CUMPROB can be calculated (step 8). For the 
third solution: 

CUM PROB 3 = CUM PSOB 2 + SELPROB 3 =0.1227 + 0.0434 = 0.1661  

The calculated SELPROM i and CUMPROB i values are shown in Table 5. 



Next in Chapter 3 the roulette wheel selection (step 9) is described. It is applied 
to both parent and children solutions to randomly select 8 solutions for the next 
generation, therefore for this intermediate population of 16 solutions the selection 
operator would be performed only 8 times. It means that 8 times a random number 
RAND (in number interval ]0; 1]) is generated. Once RAND=0,1633, we can figure 
out that it points to the roulette wheel segment denoting the third solution (see 
Table 5). The table field SELECTED shows the number of times the solution has been 
selected for the next generation. If the RAND points to the selection which once has 
been already selected, then its value is saved in the field RAND1 (or RAND2, RAND3 
etc.). The tenth solution is selected twice - at first with RAND=0,6090, but then with 
RAND1 =0.6009. As none of solutions were selected more than twice, fields RAND2, 
RAND3 ... RAND7 are not shown in Table 5. 

The selection of the fifth generation from parents and children Table 5 

 

From the selected solutions the fourth generation is formed. It is shown in 
Table 6. 

Tha fourth population Table 6 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
Further in Chapter 3 a series of experiments is described. "Stool leg" function, "waved 

bowl" function and "broken slope" function (see Fig. 3) were used as objective functions to 
search for the global maximum. The "stool leg" function can be described "with equations (I), 
(2) and (3): 

 

The parameters' ranges are: 

- 0.5 �  x1 �  0.5       - 0.5�  x2  �   0.5 

The "stool leg" function has a global maximum at point (0; 0) with function value 36. 
The global maximum is much higher than functions local maximums with the function value 
3.5. 

The "waved bowl" function is described with equation (4), but the parameter range is 
defined with inequalities (5): 

 

The "waved bowl" function has many local maximums and one region of global 
maximums. The Y value of global maximums is 1.874 , while in local maximums it is 1.586 
and 1.325 respectively. Other local maximums have even lower function values. 

The " broken slope" function which is depicted in Fig.3 case (c), can be obtained using 
expressions (6) and (7). The inequalities (8) describe the solution space: 

 



 

The "broken slope" function global maximums have function value 9.4995 and 
they are located on the line where the "slope" is "broken". The peculiarity that is not 
easy noticeable from the picture of the function is that the incline of the one side of 

the slope is not the same as that of the other one. 

 

Fig. 3 Multimodal functions, which were used as objective functions for the experiment series 

A series of experiments was performed with the following parameters: 
Population_Size=>50, the terminating condition is Loop_Count=200, crossover 
probability is 1 and children number for one couple is 2 (every couple has two 
children), crossover type is "region-based crossover" in some series, but "diagonal 
crossover" in others, function type is "stool leg" ("waved bowl” or "broken slope" in 
other series) function, type of the algorithm is "multilayer genetic" (or "classical 
genetic" in other series). A series of 18 identical experiments (with different random 
numbers) was performed. Visual pictures from single experiments (of population 
displacement) and convergence curves were obtained. Also some statistical data 
(convergence curves showing mean and maximal fitness in 18 experiments) were 
obtained. Data were collected in FoxPro database tables. 

Further in Chapter 3 the behaviour of the multilayer genetic algorithm and 
classical genetic algorithm in task of searching for the global maximum of "waved 
bowl" function are compared on the basis of a randomly chosen experiment. The 
population displacement was fixed by package SPSS (see Fig. 4). 



 
Fig. 4 The disposition of populations in 16th, 24th and 50th generation of multilayer 
genetic algorithm (a) and classical genetic algorithm (b) while searching for the maximum 
of "waved bowl" function which is depicted in Fig.3 (b). The level plane shows the mean of 
population fitness. 

At the end of Chapter 3 the conclusion is drawn that the multilayer genetic algorithm is 
more adaptive for optimisation of multimodal functions. The relative error (percentage of 
global maximum) while searching for the maximum of "waved bowl" function is shown in 
Fig.5 (a), but the case with "broken slope" function is depicted in Fig.5 (b). 



 

Fig. 5 The mean value of relative error (in 18 experiments) /or Multilayer and Classical 
algorithms while searching for the maximum of "waved bowl" function (a) and "broken slope" 
function (b) 

At the end of Chapter 3  the effect of diagonal crossover on premature 
convergence is discussed. 

In Chapter 4 the restricted genetic algorithm is proposed to search for global 
maximums of functions, containing regions of global optimums. The problem of search in 
such tasks is explained. 



In Chapter 4 the function depicted in Fig. 6 is proposed as a test function for 
genetic algorithms. In the research it is called "volcano-shape" function, because it has a shape 
of a volcano with a crater in its centre. It can be obtained using these expressions: 

 

The parameter space of the function is: 

-2 �  x1 �  2 
-2 �  x2 �  2 

In Chapter 4 the possible behaviour of the genetic algorithm, searching for the 
maximums of the volcano-shaped function, is analysed (see Fig 7.). 

 

Fig. 6 Volcano-shape function 

In a few single tests with classical genetic algorithm we can see the movement of 
population until at some moment (during certain generation) it is located in the inner part of 
the volcano, i.e. inside the crater (see Fig 7, case c). The movement away from the centre of 
the crater (see Fig 7, case c) in all four directions (which we expect), never happens. 
Classical genetic algorithm can move its population only in one direction (see Fig 7, case b). 



 
Fig. 7 The behaviour of classical genetic algorithm in the lask of maximisalion of 
volcano-shape function: location of its population during the first generations (a), shift 
to one side caused by asymmetry in distribution and premature convergence(b) and ideal 
behaviour (c) 

In Chapter 4 the author offers restricted genetic algorithm which is a model of a 
purposeful selection. Its main idea is borrowed from the social life models of humans - an 
individual creates children with other individual which is not casually chosen, but which is 
chosen according to certain qualities. The marriage within the certain nation is an illustrative 
example for such coupling. 

The idea of the restricted genetic algorithm is the following: at first, the population is 
sorted in the ascending sequence of parameter x1. Then it is divided into subpopulations with 
approximately same number of individuals. For example, if the population contains 200 
solutions and we intend to divide the population into 5 subpopulations, then in the first 
subpopulation 40 solutions with the smallest x1 value would be included. The second 
subpopulation would contain the next 40 solutions with lager x1 values and so on. The fifth 
subpopulation would contain 40 solutions with the largest x1 values. Let us call the 
subpopulations "Races" and look at the illustration depicted in Fig. 11 (a). If the optimisation 
space is a two-parameter space, then we can divide every 'Race" into smaller populations 
depending on x2 values. Suppose, we want to divide every "Race" into 3 smaller 
subpopulations. As 40=13+13+14, we would get two subpopulations with 13 solutions and 
one with 14 solutions. Let us call the small subpopulations "Nations". At first we sort the 
solutions of the first "Race" in the ascending sequence of parameter x2. Then we include the 
first 13 solutions (with the lowest x2 values) within the first "Race" into the first nation, the 
next solutions - to the second and so on. The last 13 plus remaining solutions belong to the 
last "Nation" of the first "Race" (see Fig. 11 a). Such dividing (or re-dividing) happens at the 
beginning of every interaction (it is part of forming a new generation). The crossover operator 
is only permitted within the "Nation" while the selection operator is performed on the whole 
population as if it was not divided. 

Further in Chapter 4 a description of the restricted genetic algorithm is presented. 
The restricted genetic algorithm contains the following steps: 

1. generate initial population as set of random numbers (say, population of 200 
solutions); 

2. calculate the fitness value Yi of each solution and its relative fitness (from the 
"floor" Yo) YRelative=Yi  - Y0 , where Y0 = min (Yj); 



3. save the results; 
4. divide the population into 5 Races by assigning the number of Race to every 

individual: 
4.1. sort the population in the ascending sequence of parameter Xi.and to the 
first m solutions (say, to the first 40 solutions) assign RaceNumber=l; 
4.2. to  the next  40   solutions   having higher   values   of Xi      assign 
RaceNumber=2; 
4.3. to the next 40 solutions assign RaceNumber=3; 
4.4. to the next 40 solutions assign RaceNumber=4; 
4.5. to the last 40 solutions assign RaceNumber=5; 

5. divide every Race into 3 Nations by assigning number of Nation to every 
individual: 

5.1. sort the population in the ascending sequence of parameter X2.and to the 
first m solutions (say, to the first 13 solutions) assign NationNumber=l; 
5.2. to  the  next   13   solutions   having higher   values   of x.2     assign 
NationNwnber=2; 
5.3. to the last 14 solutions assign NationNumber=5; 

6. in cycle over all Races and all Nations: sort the solutions of the certain nation 
in the descending sequence of Y. Assign the couple identification numbers: 
CoupleNumber=l for the first two solutions, CoupleNumber=2 for the next 
two and so on (coupling operator, used in Multilayer genetic algorithm); 

7. cross-over (the region-based crossover operator depicted in Fig. 1) parents 
(solutions with the same couple number, belonging to the same Race and the 
same Nation) to obtain 2 children. In case of both parents being copies of the 
same solution, mutate the one of the parents and both children. The mutation 
is performed by re-generating one of the parameter values (chosen randomly) 
accordingly to uniform distribution in the whole range of the solution space; 

8. calculate the fitness value Yj of each solution and its relative fitness (from the 
"floor" YRelative i=YiYo ,where Y0=min(Yj); 

9. calculate survival probability SELPROBt (with which it will be selected for 

the next generation) for every solution as 

 

10. calculate   cumulative   probability   CUMPROBi   for   i-th   solution   as 
CUMPROB i -1 +SELPROB i ; 

11. perform roulette wheel selection ( Population_Size times ); 

12. check if the final condition is met (for example, if 100 iterations has been 
performed). If it is not, then go back to step 3, otherwise end the procedure. 

In Chapter 4 an example of the restricted genetic algorithm working with population of 
24 solutions in the task of maximization of "volcanic" shape function is described. It is a 
detailed analysis of a real experiment having the following parameters: 

The size of population Poputation_Size=24, the terminating condition is 
Loop_Count=12, the probability of crossover CrossoverRate=1 and number of children in 
one family is 2 (every couple has two children), the type of crossover is 

 



"Region- based", the type of the function is "Volcanic shape", the type of algorithm is 
"Restricted", number of Races Race_Count-2 and number of Nations Nation_Connt=2. 
The search space is delimited by inequalities: 

-2.0 �  x1 �  2.0       -2.0 �  x2 �  2.0 

At first the initial population is generated as a set of solutions. Each parameter of every 
initial solution is generated as a random number in interval ]-2; 2]. After that the function value 
Y is calculated. The initial population of the experiment is shown in Table 7. 

The initial population Table 7 

 

The initial population has to be divided into subpopulations called "Races" (step 4 of the 
restricted algorithm). At first, the solutions are sorted in the ascending sequence of the 
parameter x1. To the first 12 solutions the Race=l is assigned, but to the next 12 solutions 
Race=2 is assigned. The population, divided into two races is shown hi Table 8. 

The initial population divided into Races Table 8 

 

Next the races are divided into nations (step 5 of the restricted algorithm). At first, the 
first race is sorted in the ascending sequence of the parameter Xi -The first 6 solutions obtain 
Nation=l, but the next six get Nation=2. After that the second race is sorted in the same way and 
again, the first six solutions are included hi its first Nation, 



but  the -next  six -  in   the second.   The population,   completely  divided  into 
subpopulations is depicted in Table 9. 

The initial population divided into Races and Nations Table 9 

 

Then the coupling operator (step 6 of the restricted algorithm) follows. The solutions 
belonging to the same Race and same Nation are sorted in the descending sequence of the 
function value Y . The first two solutions are assigned Couple = l, the next two are assigned 
Couple = 2 and so on. The initial population with assigned couple numbers is shown in 
Table 10. 

Initial population, divided into couples Table 10 

 

The solution space and the initial population divided into Races, Nations and couples 
are depicted in Fig.8. The solutions, belonging to the second Race are black, other solutions 
belong to the first Race. The solutions belonging to the first nation are denoted with rings, 
while those belonging to the second one are denoted with triangles. The members of every 
couple are connected, therefore we can evaluate the possible location of their children. 
Larger rings (or triangles) have a higher fitness value Y. 



 
Fig. 8. The initial population - divided into Races, nations and couples. 
The circle marks the target line (of global maximums) 

Next the cross-over operator is performed (step 7 of the restricted genetic 
algorithm). The region crossover is exactly the same which was used in 
Multilayer genetic algorithm. The parameters of the children x1 and x2 are 
generated as random numbers in the area delimited by parameter values of 
their parents. The only difference is that both parents in every couple have not 
only similar Y values, but also similar x1 and x2 values. The children with their 
parents are shown in Table 11. 

Children generation from parents Table 11 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
In the column titles of Table 11 the following text abbreviations are used: 

"Race" is replaced with Rn (Race number), but "Nation" is replaced with Nn (Nation 
number). 

Next the fitness value Y and its relative value Y_Relative for every solution is 
calculated (step 8 of the Restricted algorithm). The function value of volcano-shaped 
function can be calculated using expressions (9), (10) and (11). Then the minimal 
value of Y is found: Y_min=2.08 (it is 4801 solution in table 11). From step 8 we 
remember that Yo=Y_min, therefore the "floor" of this population is 2.08. Now the 
relative fitness value of every solution can be obtained: 

YRelative  i = Yi -Y 0 
 

For example, for the third solution: 

Y Relative 3 = Y 3 - Ymin = 9-72 - 2.08 = 7.64 

The obtained Y Relative, values for all 48 solutions are shown in Table 12. The 
column title "Nr" denotes the identification number of the solution. 

Values of  Y_ relative Table 12 

 

After that the sum of all Y relative is calculated, and �  YRelative j = 310.67. The 
survival probability (probability to be selected for the next generation) SELPROB i is 
calculated (see step 9 of the restricted genetic algorithm): 

 

For example, for the third solution the calculation (of SELPROB 3 ) can be done 
using the equation in such a way:      , 

 



Then we can obtain the cumulative probability (see step 10 of the restricted genetic 
algorithm) CUMPROB i for i-'th solution as CUMPROB i-1 +SELPROB i . Therefore for the 
third solution we have: 

CUM PR0B3 = CUM PROB2 +SELPROB3  = 0.0499 + 0.0246 = 0.0745 

The calculated values of survival probabilities and cumulative probabilities of all 48 
solutions are given in Table 13. 

Survival probabilities and cumulative probabilities Table 13 

 

Next the roulette wheel selection is performed 24 times (see step 11 of the restricted 
genetic algorithm). The roulette-wheel selection is applied to both parent and children solution 
intermediate population. It means that 24 random numbers belonging to interval ]0; 1] are 
generated. Once RAND=0.1789, we can figure out that it points to the roulette wheel segment 
denoting the eight solution (see Table 14). When at some moment RAND=0.1836 , pointing to 
the same solution is generated, it is saved in the field RAND1 . As every solution in this task 
can be chosen 3,4, ...24 times, other fields RAND2, RAND3, RAND4 etc. were used, but in this 
experiment only twice-selected cases appeared. The data obtained during the execution of the 
selection operator is collected in Table 14. 



Data used in the roulette-wheel selection Table 14 

 

The second population was obtained as a set of selected solutions and it is shown in 
Table 15. 



 

Next the new population is divided into Races, Nations and couples, and the obtained 
subpopulations are slightly moved (see Fig. 9) to one side. 

 
Fig. 9 The second population - divided into Races, Nations and couples 

In Fig. 9 one can observe that in the second couple of the 1st Race and 1st Nation both 
parents coincide, i.e. they are copies of the same solution. That leads to the mutation of a 
randomly chosen "Mother's" parameter. In the same way the both children are mutated (the 
similar situation was described in the multilayer algorithm). 

Next in Chapter 4 the author describes a series of experiments. The maximization 
of "stool" function, "volcano-shape" function and "waved bowl" function are performed by 
means of the restricted genetic algorithm. The effectiveness 



of the restricted genetic algorithm is compared with that of multilayer 
genetic algorithm and classical genetic algorithm. 

The "stool" function has four global maximums (its solution space is enlarged 
now if we compare it with the first series of experiments). The "stool" function is 
depicted in Fig. 10 (see case a). Its cross-section with x2 = 0 is shown in Fig. 10 (b). 

 

Fig. 10. The "stool" function which was used to test the uniformity of population clouds in classical 
genetic algorithm, multilayer genetic algorithm and restricted genetic algorithm: three-dimensional 
picture (a) and cross-section with x2=0 (b) 

The "stool" function can be described with expressions (1), (2) and (3). The 
solution space parameters' range is: 

 
-1 �   x1  �  7  -1 �   x2  �  7 

"Volcano-shaped" function has already been described by equations (9), (10) 
and (11) and it is depicted in Fig.6. 

The solution space of the function in the series of experiments was: 
 

-2 �   x1  �  2 
 

-2 �  x2  �  2 
 

The "waved bowl" function is depicted in Fig. 2(a) and it has already been 
described by equation (4). The solution space during the trial of experiments was 
the following: 

- 0.75 �  x1 �  0.75        - 0.75 �  x2 �  0.75  

The main aim of the series of experiments was: 



1) To verify that the restricted genetic algorithm is able to search in opposite 
directions, while the classical is not. 

2) To verify that the restricted genetic algorithm has stronger uniformity within 
its population cloud than the classical one. 

In Chapter 4 the results of experiments are presented. Both individual experiments 
with printouts of their population clouds and the convergence curves showing means of 18 
similar experiments (with different random numbers) are displayed. 

In Chapter 4 explanation of the restricted genetic algorithm behaviour in maximization 
task (of volcano-shape function) is given (see also Fig. 11). 

 

Fig 11. Fixed moments of the restricted genetic algorithm performance while 
maximizing "volcano-shaped" function: 1" (initial) population (a), 8th, 16th and 
100th populations (b). The coloured ring is the target area. 

In Chapter 4 the explanation of the behaviour of restricted genetic algorithm is given. The 
subpopulations of the initial population are approximately of the same size, therefore they 
cover approximately the same area. After the struggle for survival begins, subpopulations 
migrate to the areas of higher fitness, therefore the areas of lower fitness become deserted. 



The series of experiments showed that restricted genetic algorithm can search in four different 
directions better than classical genetic algorithm or multilayer genetic algorithm. 

In Chapter 5 the author offers a new approach to multicriterial optimisation problems, 
and their solving by means of genetic algorithms. The aspects of search for Pareto set solutions are 
discussed. The maxi-min and maxi-max decision strategies are reviewed and their usage to optimisation 
with genetic algorithms is considered. 

In Chapter 5 the simultaneous maximization of two functions is discussed (see Fig 12 (a)). The 
functions can be calculated by the following equations: 

 

Here, equation (13a) must be used to calculate the first function (criterion) Fl, but equation 
(13b) must be used to calculate the second function F2. The parameters' range is: 

-1 �  x1 �  3 
-1 �  x2 �  3 

As can be seen from the equations, the maximal function value is 18.5. 
If we apply maxi-min decision strategy to the both functions, then the objective function 

at every point of the solution space can be obtained as minimal value of die both functions (see 
the cloud of initial population in Fig. l2 (b)). If maxi-max decision method is applied, then the 
value of the objective function can be obtained as the maximal value of the both functions (see 
the cloud of initial population in Fig. 12 (c)). If we use classical genetic algorithm to search for 
maximum of these new objective functions thai it would find a single solution, but the solution 
found for objective function in Fig.12 (b) would never coincide with the one found for 
objective function in Fig. 12 (c). The question is - how to obtain several diverse solutions by 
means of genetic algorithm so that a decision maker who is not sure about his strategy (maxi-
max or maxi-min) can obtain the best solutions for comparison and consideration? 



 

Fig 12. Two functions which were used for the task of simulianeous maximisation (a) and the 
initial populations showing objective functions if maxi-min decision method (b) or maxi-max 
method (c) is used. The level planes show the value of the mean fitness in each of the populations. 

Further in Chapter 5 the multicriterial optimisation with genetic algorithm without 
usage of decision strategies is described. If one randomly chosen criterion is used as the 
objective iunction for some solutions while the other (randomly chosen) criterion is used 
as the objective function for the remaining solutions, then optimisation would proceed 
according to the values of both criteria (see Fig. 13). 

 

Fig. 13 The initial population for simultaneous 
optimisation of two criteria without usage of either 
maxi-min or maxi-max decision strategies. The level 
plane shows the value of the mean fitness of the 
population 

The experiments in Chapter 5 prove that in such optimisation (without the decision 
strategies) the solutions belonging to the Pareto set are found. The Pareto set of the problem, 
depicted in the Fig. 13, is displayed in Fig. 14. 



 

Fig. 14. Parelo set in (ask of two criteria maximization displayed in Fig 12 (a). The 1" population and the 50th 
population of the restricted genetic algorithm when the subpopulation number is 4 (2 races and 2 nations in 
every race) 

Next in Chapter 5 an example with the restricted genetic algorithm 
maximising two criteria (see Fig. 2 (a)) is given. The parameters of the 
experiment were the following: the population size of the restricted genetic 
algorithm Population_Size=24; the rate of crossover Crossover_Rate=1; the 
terminating condition Loop_Count=6; the number of races Race_Count=2; the 
number of nations Nation_Count=2; crossover type - region - based crossover, 
objective functions - two "broken slope" functions (see Fig.12 (a)) 

At first the initial population is generated as random numbers in interval [-1; 
3]. After that both criteria values are calculated. Then, if a random number 
RANDÎ ]0; 1] is less or equal to 0.5, the fitness value is assigned equal to the 
value of the first criterion y=FUNC_l, otherwise it is assigned equal to the 
second one y=FUNC_2. 

The initial population of the experiment is shown in Table 16. 

 

The process of dividing the initial population into races is shown in Table 
17. The solutions are sorted in the ascending sequence of the parameter xi. To the 
first 12 solutions the Race=I is assigned, but to the next 12 solutions Race=2 is 
assigned (see Table 17). 

 

 

 

 

 

 

 
 



 

Next the initial population is divided into nations (according to the values of 
parameter x2). The initial population divided into races and nations is shown in 
Table 18. 

 

After that the initial population is divided into couples (see Fig. 15) 
depending on Y value of every solution. The shaded diagonal region is the target 
area (of Pareto solutions). 

 

Fig. 15. The Initial population, divided into races, nations and couples 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

As we can see, the restricted algorithm works in the same way as it did in 
the case of the optimisation of only one criterion. The next four populations of 
the experiment, divided into races, nations and couples are depicted in Fig. 16. 

 

Fig. 16. The location of Populations, divided into races, nations and couples in the 2 nd ,3 nd ,4th  and  5th 
generations in simultaneous maximisation of two broken-slope functions with the restricted genetic algorithm 

Next in Chapter 5 the usage of the restricted genetic algorithm in the 
optimisation of n criteria is described. The steps of this case of algorithm are similar 
to those when the optimisation of one criterion is performed. The differences in the 
description are marked by the shifted cursive: 

1. generate the initial population as a set of random numbers (for example, 200  
solutions); 

2. generate    a    random    number   RANDÎ ]0;    1]   for   every    solution.    If 
(l/n)*(m-1) £ RAND £ 1/n)*m where n is the number of criterion to be optimised 
and m is a natural number, then the value ofm   criterion is (randomly chosen) to 
be the fitness value for this solution; 

3. calculate the fitness value Yi of each solution (as value of the criterion chosen in 
step 2) and its relative fitness (from the  "floor" Y0)    YRelative =Yi-Yo    .where 
Y0=min(Yj); 

4. save the results; 
5. divide the population into 5 Races by assigning the number of Race to every 

individual: 
 

5.1. sort the population in the ascending sequence of parameter xi.aud to the first m 
solutions (say, to the first 40 solutions) assign RaceNumber=l; 
5.2. to the next 40 solutions having higher values of x1 assign RaceNumber=2; 
5.3. to the next 40 solutions assign RaceNumber=3; 
5.4. to the next 40 solutions assign RaceNumber=4; 
5.5. to the last 40 solutions assign RaceNumber=5; 

6. divide every Race into 3 Nations by assigning number of Nation to every 
individual: 

6.1. sort the population in the ascending sequence of parameter x2.and to the first 
m solutions (say, to the first 13 solutions) assign NationNumber=l; 
6.2. to the next 13 solutions having higher values of x2 assign NationNumber=2; 



6.3. to the last 14 solutions assign NationNumber=5; 
7. in cycle over all Races and all Nations: sort the solutions of the certain nation in the 

descending    sequence    of   Y.    Assign    the   couple    identification    numbers: 
CoupleNumber=l for the first two solutions, CoupleNumber=2 for the next two and 
so on (Coupling operator); 

8. cross-over (the region-based crossover operator depicted in Fig.  1) parents 
(solutions with the same couple number, belonging to the same Race and the same 
Nation) to obtain 2 children. In case of both parents being copies of the same 
solution, mutate one of the parents and both children. The mutation is performed by 
re-generating one of the parameter values (chosen randomly) accordingly to 
uniform distribution in the whole range of the solution space; 

9. generate    a    random    number   RANDÎ ]0;     1)   for   every    solution.    If 
(l/n)*(m-1) £ RAND £ (1/n)*m where n is the number of criterion to be optimised 
and m is a natural number, then the value of m   criterion is (randomly chosen) to 
be the fitness value for this solution; 

10. calculate the fitness value Yi of each solution (as value of the criterion chosen in 
step 9) and its relative fitness (from the   "floor"  Yo)  YRelative=-Yi-Yo    .where 
Y0=min(Y j); 

11. calculate survival probability SELPROB; (with which it will be selected for the 

next generation) for every solution as 
 
 

12. to   calculate   cumulative   probability   CUMPROBi   for   i-th   solution   as 
CUMPROB i-1 +SELPROB i ; 

13. to perform roulette wheel selection (Population_Size times ); 
14. to check if the final condition is met (for example, if 100 iterations has been 

performed). If it is not, then go back to the step 4, otherwise end the procedure. 

At the end of Chapter 5 the serial experiments of multicriterial optimisation are 
considered. The task of simultaneous maximisation of two "broken slope" functions (see Fig. 12 
(a)) in parameter region x1Î ] = 1; 3] and x2Î ]=1; 3] with the classical genetic algorithm, 
multilayer genetic algorithm and the restricted genetic algorithm was performed. After that the 
task of simultaneous maximisation of two "volcano-shaped" functions (see Fig. 17 (a)) in 
parameter region x1Î ] -2.0; 2.0] and x2Î  ]-2.0; 2.0] with the means of the same genetic 
algorithms. 

To solve both tasks, Maxi-Min, Maxi-Max and no-strategy approaches were used. 
The equations of the both "broken slope" functions were given above (see equations 

(12), (13a), (13b) and (14)). 
The "volcano-shaped" functions are described by the following expressions: 

 

 



 

The parameters' range is: 

-2 £ x1 £ 2 -2 £ x2 £ 2 

Equations (16a) and (16b) both describe FB , and expression (16a) appertains to the 
criterion Fl, but expression (16b) appertains to the criterion F2 (see Fig. 17). 

 

Fig.17. Two "volcano-shaped" criteria in the parameter space: three dimensional representation (a); 
cross-section with  x2=0 (b) 

As can be seen from Fig. 17, the solution of the simultaneous maximisation of two 
"volcano-shaped" criteria problem are points A and B of the solution space, because there 
both criteria have the highest value. The experiments showed that Maxi-Min strategy is the 
most suitable to find the Pareto set solutions. 

Chapter 6 describes the application of the genetic algorithms to the solution 
of a real optimisation problem. 

The task is to find optimal weights for a neural network. Let's assume that a neural 
network having weights wi for input signals xi and output signal o and using sigmoid function 
as the activation function, has the following analytical expression to describe its output: 

 
The graph of the sigmoid function is shown in Fig. 18. 



 

The neural network is supposed to solve the continuous XOR problem (on real numbers), 
and it is trained by using the solution set that is given in Table 19. 

 

The task is to maximize the minimal of all fitness values for each solution (see Table 19). 
The structure of the neural network is shown in Fig. 19. 

 

Fig. 19. The structure of the neural network solving continuous XOR problem 



The structure of the neural network was transformed into a genotype of genetic algorithm, 
represented by a string of real parameters. The structure of the string is represented in Fig. 20. 

 

Fig. 20. The structure of the string 

To accomplish the task, the Wright genetic algorithm, classical genetic algorithm, 
multilayer genetic algorithm and restricted genetic algorithm were used. From the experiments 
it can be seen that the multilayer genetic algorithm solves the problem in fewer iterations than 
the classical genetic algorithm, because in 18 experiments the mean fitness value of the 
population reached the value of global maximum in 50th generation for classical genetic 
algorithm, but in 30* for the multilayer one (see Fig.21 case b and c). In the experiments with 
the Wright algorithm some increase in the value of the mean fitness value was observed even hi 
the 100th generation (see Fig. 21, a). 

In experiments with the Wright algorithm 4 trials out of 18 didn't reach the global 
maxima (with its fitness value 1), but reached some solutions with fitness value 0.4, which, 
probably, is the local maxima of the fitness function. In all the 18 trials using this algorithm 
the mean value of the fitness was less than its maximal value, which can be explained by high 
rate of mutations (rate of mutations was 0.2). It also might show that the solutions found by this 
algorithm do not have high precision. 

 

Fig. 21. The mean and maximal fitness values in 18 trials while optimising the weight vectors of 
the neural network shown in Fig. l 9, using: a - the Wright algorithm, b - the classical genetic 
algorithm, c - the multilayer genetic algorithm 

Experiments with the classical genetic algorithm showed that 6 trials out of 18 don't 
find the global maxima. In the successful trials the mean value of the fitness coincides with 
that of the global maxima and it proves that the best solution is found. 



Experiments with the multilayer genetic algorithm were the most successful: only one 
trial out of 18 could not find the global maxima. Most of the experiments showed a rapid 
growth of the mean fitness value in the first 15 or 20 generations. Extremely rapid growth was 
observed in 5 trials when the global maxima was reached in the first 10 generations. 

Similar experiments were performed with the restricted genetic algorithm (see Fig.22 a, 
b), but they were very time-consuming. Every trial lasted approximately 2.5 hours (for 
comparison - it took the multilayer algorithm 30 minutes, but the classical and Wright 
algorithm only 20 minutes to perform every single run). The terminating condition was the 
number of generations = 100. The population size was 800 in all the experiments, except for the 
restricted algorithm with population size 1600. 

 

Fig. 22 The mean and maximal illness values in 18 trials while optimising the weight 
vectors of the neural network shown in the Fig.19 , using the restricted genetic algorithm: 
a - mean values of 18 trials, b - in every trial separately 

The restricted genetic algorithm didn't reach the global maxima in 4 experiments of 
18 (see Fig. 22, b), which is similar to the result obtained by using the Wright algorithm. On the 
other hand, we can observe a rapid growth of the mean fitness value, which is similar to that of 
the multilayer genetic algorithm. 

Next in Chapter 6 an application of genetic algorithms to a more complex neural network 
weight optimisation problem is demonstrated. In this application, the neural network is supposed 
to recognise hand-written figures "1", "2" and "3". 

For the experiments, a set of 15 hand-written figures was used (see Fig. 23). Every 
figure is encoded as a set of 9 binary parameters. In the beginning, the recognition for all 10 
figures was developed. A neural network with 9 inputs, 6 neurons in the first layer and 10 
neurons in the second layer was created, but after the first runs the memory of the computer 
turned out to be too small and the processor speed too low for such a huge task. Therefore a 
new neural network was developed, consisting of 9 inputs, 5 neurons in the first layer and 3 
neurons in the second layer (see Fig. 23). 



 
Fig. 23. The structure of the neural network solving recognition of hand-
written figures "1", "2" and "3" 

Then the data used for the neural network fitness calculations are shown (see Table 
20). 

 

As in the previous application, the activation function of this neural network is a sigmoid 
function (see Fig. 18). The structure of the real parameters string was similar to the one shown 
in the Fig. 20 with the exception that in these experiments the string consisted of 68 parameters 
(not only of 17). As the optimisation has to be carried out in the space of 68 parameters, various 
combinations of the parameters give us various values of the output signal. Suppose we have 
a training set consisting of patterns 



 
As this neural network has 68 various values of weights, even the obtaining of the value 

0.00001 in the output of this complicated neural network will be a very rare phenomenon. For 
example, there were 3820447 random solutions to be generated to obtain just 50 solutions with 
fitness larger than 0.00001. Therefore, the initial population was not generated as randomly 
generated solution space, but as randomly generated and after that selected as solutions which 
had their fitness values larger than 0.0001. 

In Chapter 6 the calculation of fitness for every solution is shown. The fitness of every 
combination of weights was calculated from the values of the errors. The error for the net 
output number I and training pattern number k can be calculated as 

Ei
k = |di 

k -oi
k|       ,where i = l, 2,3    , but   k=l,2 ...15.     

The fitness of every output of every neuron can be calculated  as 

L i 
k = l - Ei 

k       , where i =l, 2, 3    ,but   k =l, 2 ...15  
The fitness of the solution is calculated as follows: 

L = min (Li 
k )    , where i=l, 2, 3    , but   k = l, 2 ...15 

From this equation we see that if at least one of the error values E was larger than 
0.99999, then the fitness of the solution was less than 0.00001 and the solution was not 
included in the initial population. If any of the offspring had such a low fitness value, then it 
had some chances to survive. 

In Chapter 6 the results of the experiments are shown (see Fig. 24). 

 
Fig 24. Recognition of hand-written figures "1", "2" and "3" - the mean and maximal 
fitness values in 10 trials: a - Wright genetic algorithm, b - classical genetic algorithm 
and c - multilayer genetic algorithm. 

From the fitness values depicted in Fig. 24 it can be seen that multilayer genetic algorithm 
has found a solution in all 10 experiments in much fewer generations than Wright genetic 
algorithm (see Fig 24 cases a and c). The classical genetic algorithm showed premature 
convergence in 9 trials from 10 by concentrating the population around solutions which didn't 
have maximal fitness (see Fig 24, case b). We can also 

 

shown in Table 20. Then the weighted input signal of every single neuron is calculated 
according to this equation 



see that in this 68 dimensions solution space Wright genetic algorithm is more 
effective than the classical genetic algorithm, which is an opposite feature to that we 
observed in 2-parameter solution space, because we can obtain a larger variety of 
solutions via recombination of 68 parameters than with recombination of just 2 
parameters. 

The fitness values of the first 5 trials for each algorithm are depicted in Fig.25. 

 
Fig 25. Recognition of hand-writlen figures "1", "2" and "3" - the mean and maximal fitness 
values in (he first 5 trials: a - Wright genelic algorithm, b - classical genetic algorithm and c 
- multilayer genetic algorithm. 

The restricted genetic algorithm was not used in this application of figure 
recognition, because it is too time-consuming. On the other hand, the performance of 
multilayer algorithm was so good, that it didn't require searching in separate 
subpopulations. We know that search in separate subpopulations will certainly 
increase time, but we also must be aware that it may worsen the result (see Fig 22 of 
the previous application). 

Chapter 7 contains the conclusions and the main advantages and 
disadvantages of the offered genetic algorithms. Also the perspective of the further 
research is given. 

The appendix provides software printout and technical documentation to 
repeat experiments with the described algorithms. The software was developed in the 
FoxPro 2.6 for Dos. 



THE MAIN RESULTS OF THE WORK 

The results of the doctoral research are the following: 

1. The usage of genetic algorithms in shaping new "creative" solutions for a 
multicriterial problem is tested experimentally. The inability of the genetic 
algorithm to generate "bad" solutions (if required) on the basic training with 
"good" solutions is formulated and theoretically considered. The software 
"Genalg" is developed to generate new "creative" solutions by means of 
genetic algorithms for the specific object field. 

2. The  phenomenon   of premature   convergence   of   genetic   algorithms   is 
formulated and examined. Particular cases of optimisation of multimodal 
functions are explored and reasons of premature convergence of genetic 
algorithms (in them) are explained. 

3. A new genetic algorithm is proposed (restricted genetic algorithm) which is 
very suitable for multimodal function optimisation. The behaviour of the 
restricted genetic algorithm is explored and compared to that of the classical 
genetic algorithm experimentally. The difference in the behaviour of the both 
algorithms and its reasons are considered theoretically. 

4. The drawbacks of optimisation of functions which contain regions of global 
optimums are studied. Experiments to achieve uniform distribution of diverse 
solutions within the population were performed. An approach to the usage of 
the restricted genetic algorithm as more effective for functions which contain 
regions of global optimums is offered. A new test function to verify the ability 
to search for diverse solutions is suggested (volcano-shaped function). 

5. The ability of genetic algorithms to search for the Pareto optimal solutions is 
examined. The phenomenon of uneven density of population of the classical 
genetic algorithm while searching for Pareto optimal solutions is observed. An 
approach to the usage of the restricted genetic algorithm as more effective for 
multicriterial optimisation is offered. New test functions are proposed. 

6. The software "Rgenalg" is developed to work with real genetic algorithms 
(classical,   multilayer,   restricted   genetic   algorithms).   It   is   usable   for 
optimisation of one criterion or for simultaneous optimisation of two criteria. 

7. An application of the restricted genetic algorithm to optimise the weights of a 
neural network (17 parameters), which is supposed to solve the XOR problem 
on real numbers is proposed. 
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