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GENERAL DESCRIPTION OF WORK

Topicality of problem. Nowadays optimisation is a very important branchesgarch.

Its particular tasks are multicriterial optimisatiosearch for the Pareto -optimal set,
optimisation of multimodal functions, and optimisat of noisy or dynamically changing
functions. At the same time the speed of compup@gations increases and so does the size of
the computer memory which gives the opportunityefffective implementation of resources
demanding and time demanding algorithms for findirgsolution with sufficient speed.

Genetic algorithms perform the search processtrteapoint of the parameter space, but
at several points at once. Genetic algorithms pseators which are probabilistic. It means
that although initial populations can be identiedlpther populations in every trial would be
different. The chance of individual (object) sualitill the next generation depends on its
fitness compared to the average fithess of thelgiiqu

The random features of genetic algorithms make thamptive to an objective junction if
its value changes in time dynamically. Though aabsgenetic algorithm has certain
disadvantages, which cause extremely bad impagptimisation process in certain tasks. One
of such drawbacks is premature convergence (rapigecgence to local optimum). It is caused
by assimilation process when moderate and goodtimady which are represented in
population in majority, assimilate the best sohgiowhich are very few due to the
peculiarities of objective function. The main airh this research paper is to study this
particular problem and its impact on optimisatioocgss.

Goals and tasks of the researcilhe employable aim of this study is to create &tien
algorithm which is applicable to optimisation of lttmodal functions. The indirect aim of the
research is to develop a sub-class of geneticithiger which are specially intended for
optimisation of multimodal functions.

Theoptimisation task of this paper is formulated as follows:

To maximize a function f (X, %...... %), Where ever; is in boundaries:
a x b
for some restrictiong; andb, .

To create such genetic algorithms, one has to Swvellowing problems:

1. To examine genetic algorithms as generators of seltions. To create a
program for such a generator.

2. To explore an analogy between binary genetic alyms and real genetic
algorithms. To explore an analogy of real crossowperator and binary
crossover operator. To compare real and Yinastation operators. To
investigate the usage of binary code and Gray icoglenetic algorithms.

3. To investigate various crossover operators of genalgorithms. To observe
and compare the impact of various crossover stestegn optimisation process
and premature convergence.

4. To investigate premature convergence and its impactmaximum search for
different functions with one global maximum. To eb& the difference in



population behaviour in cases when the maximumitigke centre of search space and
in cases when it does not.

5.To explore the performance of genetic algorithmtask of search for
maximum of multimodal function. To create a genalorithm which does not
show premature convergence like a classical gesigticithm does.

6.To investigate optimisation problems in casesmdbjective function contains
global maximum domains. To create algorithms appleto optimisation of
such functions.

7. To create a genetic algorithm which is applicabléasks of multicriterial
optimisation. To compare multicriterial optimisatjaising maxi-min and maxi
ma* strategies and not using any decision straegiall.

8. To formulate a new sub-class of genetic algoritasia model of artificial
selection. To find out possible exploitation offboatural selection models and
artificial selection models.

9. To elaborate software for real genetic algorithmd tneir application to
optimisation of real functions.

10. To create software for real genetic algorittand their application to
searching of Pareto optimal solutions in case diieriterial optimisation.

Object and subject of the researchThe object of the research is evolutionary algorith
The subject of the research is optimisation oftions using real genetic algorithms.

Research hypotheses

1. Classical genetic algorithm is not able to fmdabgl maximum of multimodal
function

2. In task of optimisation of multimodal function ngenetic operators (such as
coupling) and new strategies must be used.

3. Itis possible to create a genetic algorithm wiintls diverse solutions in
Pareto set or multi-maximum domain so that theydasteibuted in all the set
uniformly.

Methods of the researchin the thesis, the following research methods weesl: algebra
and calculus, discrete mathematics, set theorstta, genetic algorithms, decision making
methods, methods of artificial intelligence, sofvéor statistics SPSS, and software for statistics
MathCad.

Scientific novelty of work. The thesis contains an analysis of the behaviogeoktic
algorithms, which is based on both experimentallt®@snd theoretical conclusions. It can be
used to create new genetic algorithms.

hi this research a "multilayer genetic algorithras fbeen created, which is more effective for
tasks of optimisation of multimodal function tharclassical genetic algorithm. The coupling
operator, which is based on arranging of solutamtording to their fithess value, is an original
idea for reduction of premature convergence.



In this research a "restricted genetic algorithra$ bbeen created, which provides
certain diversity of solutions in case of sevedialté number of) solutions or in case of infinite
number of solutions. The idea of arranging solstiancording to their parameter values and
including them into certain subpopulations cardgarded as a model of artificial selection.

Theoretical value. Inthe research a new approach to the behaviour anafygenetic
algorithms is offered that uses statistical packsB&S. Also, two-parameter test functions,
which allow comparison of premature convergencgeuietic algorithms, are offered.

The exploration of the behaviour of the modifiedjoathms leads to the further
investigation of algorithms as the suggested geadgorithms are based on a new theoretical
approach. The new idea relates to the strategyaskaver: in order to prevent premature
convergence and to provide diversity of solutimigects with similar parameter values must
be crossed over. Techniques for coupling (thosgnoilar parameters) can be various, and
dividing the population into several subpopulaticshespending on the value of their
parameter values is one of the techniques, whilplitgy according to the fitness value is other
one.

Practical value

1. Software program "Rgenalg" was developed. It wdlused for further
experiments. Also, it will be used to prepare itasons for students. The
program parameters are the genetic algorithm pasmend its output
product is its database with experimental resilte data shows all the
information of the population in certain (fixed)rgeation, i.e. moment of
time. The program cannot be regarded as the oriehwhould serve for
commercial goals and be sold in the market.

2. The results of the research were presented to stsidend some of the
experiments performed have been used as an itiustraaterial for lecture
course "Evolutionary genetic algorithms"

3. The description files of test functions hi the Matdl package can serve as a

basis for creation of new functions.

The approbation of work
The results of the research were presented toutfierece of scientists at the following
conferences:

1. 40. RTU studentu zinatniska un tehniska konfereh@89-gada 26 - 30.
aprflis (Riga, Latvija)

2. Computational Intelligence: Theory an@ipplications; International
Conference; Proceedings/ 6th Fuzzy Days Dortmuedn@ny, May 25-28,
1999 (Dortmund, Germany)

3. "The Second International Conference on Soft atedligent Computing.
Budapest, Hungary May 25-28,1999" (Budapest, Hyhgar

4. "The 2nd International Conference Environment. hietbgy. Resources,
June 25-27,1999." (Rezekne, Latvija)

5. Starptautiska konference "Baltijas Regiona Valstegfacijas Problemas Ceja
uz Eiropas Savienlbu", Rezekne, Latvija 2000.gaearBarts (Rezekne,
Latvija)



6. "KES'2000" /Fourth International Conferencon Knowledge-Based
Intelligent Engineering Systems & Allieflechnologies, University of
Brighton, UK, 30, 31 August, 1 September 2000 (&g, U.K.)

7. The Second International conference "Simulatiormidg, Training and
Business Process Reengineering in Operations RT&r8bpt 8-9, 2000"
(Riga, Latvia)

8. ES2000, the Twentieth SGES International Conferendenowledge Based
Systems and Applied Atrtificial Intelligence, Canage, December lith-13th,
2000 (Cambridge, U.K.)

9. "International Conference on Computatiohalelligence. Theory and
Applications: 7 Fuzzy Days, Dortmund, Germany,taber 1-3, 2001"
(Dortmund, Germany)

10.RTU 43 Starptautiska Zinatniska konference, RiG#)2.gada |O.oktobris -
14.oktobris, apaklsekcija "Informacijas tehnologijavadibas zinatne" (Riga,
Latvija)

Publications. The results of the research are represented ipubiished papers,
performed by the author independently and in cheaship. Seven of the papers are
published abroad.

Personal contribution. All the results of the research described in tresatation
are obtained by the author via unaffiliated researc

The structure and volume of dissertation.The dissertation consists of five Chapters
and conclusion, Table of Contents, Bibliography anéppendix. The main text of the research
is presented on 218 pages and illustrated withpkQdres and 73 tables. The list of references
includes 21 entry.

BRIEF CONTENT OF WORK

Chapter 1describes the basic principles of the genetic itgos. The genetic
algorithms are stochastic iterative algorithms trvel/ can be described by three basic
steps, common to these methods (see "New ldeaptimi€ation" by David Come,

2000):

Step 1Begin: generate and evaluate initial a set oftiewis S, consisting of candidate
solutions

Step 20perate: create a set of new solutions S' by mgakindomised changes to some
selected members of S

Step 3Renew: randomly replace some members of S with baesmof S' and then
(unless some terminating condition is met) retarstep 2.

Chapter 1tells that existing stochastic iterative methods lba divided into two large
classes: local search and population-based séarchse of local search one current solution
and its neighbour solutions are considered. In adspopulation-based search a whole
population of diverse solutions is maintained. Saatthods are known as "evolutionary
algorithms".

Chapter lalso describes how the canonical genetic algoréhpeared as the model of
the evolutionary theory of Darwin. An assumptiomiade that any real solution (phenotype)
is encoded within some particular combination ohege (called genotype) which was
represented as a string of symbols. The herediyimagined



as maintenance of certain sub-strings of symboitsttie future generations. The
variation of beings was explained by random charfgegations) of the genes caused
by accidental impacts.

There is a short description of canonical gendgorithm and its block diagram
in Chapter 1.

Further, genetic algorithm as a generator of neltsms is discussed. The
problem of human limited creativeness is explainad some experiments to solve
this problem by means of genetic algorithms aredesd.

Chanter 2proposes region-based crossowdtich generates offspring into
a region delimited by parameter values of theiepts (see Fig. 1). The disadvantages
of binary encoding of real parameters are discu¢&addberg, 1989). The idea of a
real genetic algorithm as analogy of the binary @eight, 1991) is shown.

Chapter 2shows how the binary code and the Gray code camsbé in genetic
algorithms.

Chapter 2interprets real crossover as an analogue of cressufvbinary strings
(Wright, 1991). This real crossover is calledcormrbinatorial crossoverih the paper,
because two sub-strings of real parameters are io@ohtin a new string, describing a
new solution. The description of a random changa edndomly chosen parameter is
shown as an analogue of mutation in a binary stfilgight, 1991) afterwards.

Then next the description of region-based crossésléows. The author shows
an illustration of two-parameter space where onthefparents has parameter values
(2.5; 0.15), but the other one has parameter vdBi&s 0.4). In Fig. 1 we can see that
the children of both parents would be generatedaenly in the region delimited by
parameter values of their parents. The author demsisuch a crossover strategy as a
model of crossover of living beings, for examplabp hair colour if the baby is of a
blond mother and a dark-hair father can be in waricolourings from blond till dark.
The author also explains that region-based crossdwes not need encoding and
decoding, because the real parameters can be usethyd

The author sees the parameter values of a childisalas parameter values of
one of its parents, perturbed in the directionhaf dther parent.

3
1<x1<6

Fig.1. The region of the children to be randomiyngeated ir
the area delimited by parameter values of theienar

The main advantages of the rec-based crossover a



1. The space is searched not at discrete points wdriehn sixteenth (n/16) or n
sixty-fourth (n/64) of the space size in the di@ttof a certain parameter
axis, bait in continuous space with the assignecigion;

2. The algorithm gets simpler (it isn't precision-degent any more);

3.The economy of resources is achieved, because bihary coding and
decoding is not needed.

4. The region-based crossover does not creatsitifear illegal children.

The region-based crossover is compared with condsiah crossover through both
single trials (randomly chosen) and series of iEst{the mean of population fitness and the
mean of the best fitness is compared). The mutatidooth cases means creating a new
parameter value for one of parameters which isrgetbas a random number in the interval
[Xnj, ; xpax]. Mutation is only applied if both parents apies of the same solution, i.e.
mother=father. Then one of the parents is left amghd while the other one and both their
children go through the mutation of one parameter.

In Chapter 2he diagonal crossovdéwhen the children are generated at the random
point of the line connecting both parents) is dised. It is compared with the arithmetic
crossover(when children are generated at the points, digidhe same line in proportion 1:3
and 2:3.)- The trial with arithmetic crossover awes the previous studies (Wright, 1991),
which demonstrates that the arithmetic crossovenase effective than the combinatorial
crossovein many optimisation problems.

In Chanter 3he author proposes a multilayer genetic algorithsearch for the
maximum of multimodal functions.
At the beginning of the chapter the drawbacksassital genetic algorithm are
mentioned:

1. The genetic algorithm can find a local optimumeast of global one.

2. The possibility of successful optimisation lies the characteristics of the
objective function as well as hi the operators loé tgenetic algorithm and its
parameters.

3. If the objective function has more than one glologtimum, the genetic
algorithm will either find only one of them or sh@remature convergence.

4. If the objective function has a region of globaltispms (infinite number of
optimums), then the classical genetic algorithm| viihnd only one solution
belonging to the region (instead of finding manyedse solutions, all of them
being global). Or possibly, the classical genetigo@thm may end the search
process in premature convergence.

Next inChapter 3he classical genetic algorithm with region-bagedsover is described.

After diat the behaviour of the classical genetgndathm in the task of optimisation
of multimodal runction is explored. The prematusavergence is observed.

Then the_coupling operatis proposed to diminish premature convergencdastical
genetic algorithm.

The phenomenon of premature convergence is illedtia Fig. 2(b), where two cross-
sections of the function depicted in Fig. 2(a)sirewn. One can see a region of fine fithess level
of y=I .5866 on the cross section with X2=0.63 wiienparameter Xi values are in range [-0.2;
0.2]. Although the first population always contasoutions



near global raaximums with y=1.874 , predominarfadé® solutions in the local maximum
always causes the assimilation of the first ones.
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Fig.2 Objective function (a) and Premature convecgeof classical
genetic algorithm to the areas of fine fithess Whian be explained by
predominance of fine solutions, which causes atdiom of the best

ones (b)

The hypothesisbout premature convergence is stated as follbles:premature convergence
diminishes if free crossover is infringed by ramgthe solutions according to their fithess
value (in its descending direction). Then the fsst solution is coupled for crossover with

the second one, the third is coupled



with the fourth one, etc. That strategy can onlyubed if similar objective function fitness
values are mapped to similar parameter values.

Further inChapter 3the multilayer algorithnis described. The algorithm can be brought
to the following steps:

1) generate the initial population randomly (consistsay, of 200 solutions);

2) calculate the fitness value of every solution Y;

3) save the results;

4) arrange solutions in the descending sequence ofoY.assign couple numbers
so that the first two (best) solutions have a ceuplmber equal to lthe next two
solutions have a couple number equal to 2 and;so on

5) cross-over (the region-based crossover, see Figpaf@nts (solutions with the
same couple number) twice, to obtain two childrém.case of both parents being
copies of the same solution, mutate the one ofplents and both children. The
mutation is performed by re-generating one df garameter values  (chosen
randomly) according to uniform distribution in tlvbole range of the solution space;

6) calculate fithess value Y for every solution;

7) calculate survival probabilitBELPROB (with which it will be selected for

. . ¥
the next generation) for every solution asz—;, :
i

T

8) calculate cumulative probability CUMPROBI for i-th  solution as
CUMPROB 1,+SELPROB:

9) perform roulette wheel selection ( 200 times );

10) check if the final condition is met (for examplif 100 iterations has been
performed). If it is not, then go back to the Septherwise end the procedure;

Further inChapter 3,an example with the multilayer genetic algorithnsliewn. The
task is to find the maximum of the "stool leg" ftios (see Fig.3, case a and equations (1), (2)
and (3)) with the population size = 8.

The parameters of the experiment are the followktapulation_Size=8the terminating
condition isLoop_Count=7 crossover probability is 1 and children numberoioe couple is
2 (every couple has two children), crossover tgpagion-based crossover”, function type is
"stool leg" function, type of the algorithm is "rilalyer genetic", the parameter values of the
solution space:

-0.5 X1 0.5 -0.5 X2 0.5

Further inChapter 3he initial population of the experiment is sholte every parameter
value is a randomly generated number belonginghéoitterval ]-0.5; 0.5], The initial
population is depicted in Table 1.

The initial population Table 1
X1 X2 Y GENERATION
o1 020 3,05
037 0,21 64
007 0,39 75
0,24 -0,07 3,
034 013 21

-0,07 0,09 3,76 1
-0,1 0404 1,66 1
0,1 -0,35} 2,16{ 1




The column title "X1" denotes parameter x1 , coluith@ "X2" denotes parametis ,
column title "Y" denotes function value, but "GENERON" denotes the number of the current
generation.

Further in this example let's assume that twotitera of the algorithm have been
performed and we will follow the execution of thard iteration of multilayer genetic
algorithm. All the data were documented from a egperiment.

In Table 2 the third population is shown. It diffdrom the initial population in limited
diversity of solutions, because the solutions & tfeneration are copies of the few solutions
with the highest fithess value.

The third population Table 2
R Y__| GENERATION

015, 003 3.54
0,05 003 3.0
0,05 005 3.0
0,11 0,01 3,77
011 020 3,05
011 020 3,05
0,07 ___009 3.7
015 018 301

(L) RS EFS EFAY RIRY [WC] (WE) L0 )

Next in Chapter 3'step 4" of the multilayer genetic algorithm is wimo The solutions
are arranged in the descending sequence of Y vEoy &vo neighbour solutions (starting from
the top) the same number of couple is assignedrdibee "mother" and "father" do not show
any particular meaning for the algorithm, and theyadded just to make it easier to figure out
the parents of every "family".

The third population, already arranged, is showfainle 3.

The third population, arranged Table 3
0,05 ),05 3.9 ther 1 %X
0,05 0,05 3,90 ather 1 3
0,11 0,01} 3,77Mother 2 3
0,07 0,0 3,76Father 2 3
0,15 0,0 &sifu_m 3 3
0,11 0,20 3,05F ather 3 3
0,11 0.20) 3,0 ther 4 3
0,15 0,18 3,01Father 4 3

Further inChapter 3he 5th step of multilayer genetic algorithm isvshoAfter crossing the
first two parents, children as two their copies@rtained, because both "Mother" and "Father”
are copies of the same solution (see Table 4). [Eadls to mutation of one of "Mother's"
parameters. As random numkRand_num<0.5therefore the paramets; of "Mother" is
going to be mutated. It is generated as a randanibewuin range ]-0.5; 0.5] and = - 0.37 is
obtained. Then the Y value of the "Mother" is regkited, and y = 2.32 is obtained (see Table
4). The same mutation operator is applied to buttren of Couple 1.



The children of the second couple are generatdukirfiollowing way: The parameters
X1 of both parents delimit range ]-0.07; 0.11], anel % value of the child is generated as a
random number in the range. In similar way,Xh&alue of the child is generated as a random
number in the range ]0.01; 0.09]. For the firsticttihe random numbers axg=0.03 and
X,=0.08 but for the second child theye % = - 0.07 and x= 0.03(see table 4). The values
of Y are calculated (step 6 of the algorithm) aday to equations (1), (2) and (3).

Formation of the children of the third Table4
generation in the region crossover

(4] X1 X2 Y
1 1d1 805 -0,25 0,05 308 2.9
1 [Child2 D,05/8:85 -0,14] 3.6 35
1 Elnlhu- -0,37 0,05 3,90

ather 0,05 0,05 3,

2 [Childl 0,0 0,08 3,8
2 [Child2 - ogx'r 0, 3,90
2 Mother 0,11 0,01] 3,77
2 [Father 0,07 0,09 3,7
3 [Childl 0,14 0,11 3,390
3 [Child2 0,14 011 341
3 other 0,15 0,05
3 ather 0,11 0,20 30!
4 ild1 0,15 0,20 29
4 Child2 0,12 0,20 3,
4 Mother 0,11 0,200 3,08
4 [Falher 0,15 0,18 3,010

Next the survival probability for every solutiorositd be calculated (step 7). To
do that, the sum of all the function values hdsetoalculated:

16
¥, =53.46
J=1

After that the survival probability or selectioropability SELPROBIs
calculated. For the solution in the third row oblEs4 we have:

SELPROB, =—2— = 222 0,0434

53.46
2

=i

Now, the cumulative probabiligUMPROBcan be calculated (step 8). For the
third solution:

CUM PROB; =CUM PSOB + SELPROB; =0.1227 + 0.0434 = 0.1661

The calculateELPROM andCUMPROB, values are shown in Table 5.



Next in Chapter 3the roulette wheel selection (step 9) is descrilbeid. applied
to both parent and children solutions to randomdlest 8 solutions for the next
generation, therefore for this intermediate popafatof 16 solutions the selection
operator would be performed only 8 times. It me#ret 8 times a random number
RAND (in number interval ]0; 1]) is generated. OrRAND=0,1633 we can figure
out that it points to the roulette wheel segmemateng the third solution (see
Table 5). The table fiel@ELECTEDshows the number of times the solution has been
selected for the next generation. If tRAND points to the selection which once has
been already selected, then its value is savelderfieldRAND1(or RAND2, RAND3
etc.). The tenth solution is selected twice - egtfivith RAND=0,6090, but then with
RAND1=0.6009. As none of solutions were selected moae tivice, fielddRAND2,
RANDS3 ... RAND&re not shown in Table 5.

The selection of the fifth generation from pareartd children Table 5
[FRICOUPLEMEMBER] X1 | X2 | ¥ PROBJCUM PROB| RAND | RAND]1 SELECTED]
1 1 Child1 -0,25 0,084 2! 11,0556 10,0555 0

2 T [Child2 0,05[-0.14 359 0,0672 0,1227 0

3 Mother -037 0.08 2,3  0.0434 0.1661] 0.1633

! [Father 0,05 0,05 390  0.072 0,2391 ]

5 2 [Childl 0,03 0,08 386  0,0721 0,3113 0

3 2 [Child2 -0,07] 0,03 350  0,0729 0.3842] 03556 1

7 2 Mother 011 0,01] 3779 00706 04 0,4429 1

8 2 Father -0,07] 0,09 3,74 0,070 0,5251] 0,518¢ 1

9 3 ild1 0,14] 0,11] 339 0,0634 05885 0,5457 ]

10 34% 0,141 0.11) 3411 0,063 0,6523] 0,6000 06009 3

11| 3 |Mother 0,15/ 0,05 354 0,066 07185 0

12| 3 [Father 011 020 3,04 0,057 0,7755) 0

13| 4 [Childl 0,15 020 290 0,054 0,8208| 0

14| a4 [Chilaz 0,12 0200 3,04 0,056 0,8867] _0,8819 1

15| 4 Mother 0,11] 0,20 3,03 0.0575 0,9437) 0

16| 4 Father 0,15 0.18 3,01 0,056 1,0000) 0

I I={5346 |

From the selected solutions the fourth generatsooformed. It is shown in
Table 6.

Tha fourth population Table 6
AT [ ¥ [ CENERATION

PP e e

-0,07] 0,03 5 4

0,14 0,11 3,39 2

0,14 0.1 3,41 L

-0,07 0, 3,76 4

0,02 0 3,04 4

0,11 001 3,77 4

-0,37 0,05 2,33 4
_9‘!4 l]hll. 3,41 4




Further inChapter 3a series of experiments is described. "Stool legttion, "waved
bowl" function and "broken slope" function (see.RBywere used as objective functions to
search for the global maximum. The "stool leg" fiomccan be described "with equations (1),
(2) and (3):

) = 2+ filx, %)) (6 +4- 0(fi(x, %) -2 +0.1)) (1)
-1 Vx<0

, where ®(x)=4{ 0 x=0 (2)
1 ¥Vx=0

and  f(x,,%;)=cos(x, -i;—)-cos(Q-;r-,rl)+cns(,t,_ -%}-cﬁs(z-x‘xz} (3)

The parameters' ranges are:

-05 X1 0.5 -0.5 Xo 0.5

The "stool leg" function has a global maximum anp¢0; 0) with function value 36.
The global maximum is much higher than functiom&leanaximums with the function value
3.5.

The "waved bowl" function is described with equat{d), but the parameter range is
defined with inequalities (5):

£ x) = (e +2 ) -(sinz(SO-(xlz +x§)"'*J+1J G

-075557,<025 . -0.255x, <075 (5)

The "waved bowl" function has many local maximunmsl ane region of global
maximums. The Y value of global maximums is 1.8While in local maximums it is 1.586
and 1.325 respectively. Other local maximums haea éower function values.

The " broken slope” function which is depicted ig.F case (c), can be obtained using
expressions (6) and (7). The inequalities (8) dmsdne solution space:

£, %,) =9+(1—x' *2"‘2 Jm-ul +2,))-(-1+ @A =2 =(x, +x,)))) , where (6)



-1 ¥x<0

Q)[x)n 0 x=0 (7)
1 Vx>0
-255x 51 -25=<x, <1 (8)

The "broken slope" function global maximums havadtion value 9.4995 and
they are located on the line where the "slope™i®Ken". The peculiarity that is not
easy noticeable from the picture of the functiorthiat the incline of the one side of
the slope is not the same as that of the other one.

Fig. 3 Multimodal functions, which were used aseahive functions for the experiment series

A series of experiments was performed with the ofwlhg parameters:
Population_Size=>50,the terminating condition is.oop_Count=200, crossover
probability is 1 and children number for one coujde2 (every couple has two
children), crossover type t§egion-based crossoverth some series, butdiagonal
crossover'in others, function type isstool leg" ("waved bowl!"or "broken slope"in
other series) function, type of the algorithm"multilayer genetic"(or "classical
genetic"in other series). A series of 18 identical expentsg(with different random
numbers) was performed. Visual pictures from singigeriments (of population
displacement) and convergence curves were obtaiAézh some statistical data
(convergence curves showing mean and maximal ftriesl8 experiments) were
obtained. Data were collected in FoxPro databdslesa

Further in Chapter 3 the behaviour of the multilgenetic algorithm and
classical genetic algorithm in task of searchingtfee global maximum of "waved
bowl" function are compared on the basis of a ramgochosen experiment. The
population displacement was fixed by package SR8E& Fig. 4).
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Fig. 4 The disposition of populations in 16th, 24thd 50th generation of multilayer
genetic algorithm (a) and classical genetic algamitb) while searching for the maximum
of "waved bowl!" function which is depicted in Figi8). The level plane shows the mean of

population fitness.

At the end ofChapter 3the conclusion is drawn that the multilayer genelgorithm is
more adaptive for optimisation of multimodal fuoas. The relative error (percentage of
global maximum) while searching for the maximumwhved bowl" function is shown in
Fig.5 (a), but the case with "broken slope" funttidepicted in Fig.5 (b).
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Fig. 5 The mean value of relative error (in 18 ekpents) /or Multilayer and Classical
algorithms while searching for the maximum of "wanwl" function (a) and "broken slope"
function (b)

At the end of Chapter 3 the effect of diagonalssmver on premature
convergence is discussed.
In Chapter 4the restricted genetic algorithm is proposed tacteéor global
maximums of functions, containing regions of globptimums. The problem of search in
such tasks is explained.



In Chapter 4the function depicted in Fig. 6 is proposed assé fienction for
genetic algorithms. In the research it is calledcano-shape” function, because it has a shape
of a volcano with a crater in its centre. It carob&ained using these expressions:

F(x.%) = =10+ Fy + (=104 F,)-(-140.9- D(=10+ F))+11 , where (9)

Fy=79-yx? +x A
-1 ¥x<0

O(x)=1 0 x=0 (11)
1 ¥x>0

The parameter space of the function is:

-2 X1 2
-2 Xo 2

In Chapter 4he possible behaviour of the genetic algorithrara@ng for the
maximums of the volcano-shaped function, is andlysee Fig 7.).

Fig. 6 Volcano-shape function

In a few single tests with classical genetic atbami we can see the movement of
population until at some moment (during certainegation) it is located in the inner part of
the volcano, i.e. inside the crater (see Fig & casThe movement away from the centre of
the crater (see Fig 7, case c) in all four dirextigwhich we expect), never happens.
Classical genetic algorithm can move its populatioly in one direction (see Fig 7, case b).



Fig. 7 The behaviour of classical genetic algoritimthe lask of maximisalion of
volcano-shape function: location of its populatauring the first generations (a), shift
to one side caused by asymmetry in distribution @methature convergence(b) and ideal
behaviour (c)

In Chapter 4the author offers restricted genetic algorithm Wwhis a model of a
purposeful selection. Its main idea is borrowednfthe social life models of humans - an
individual creates children with other individuahieh is not casually chosen, but which is
chosen according to certain qualities. The marn@iign the certain nation is an illustrative
example for such coupling.

The idea of the restricted genetic algorithm isftllewing: at first, the population is
sorted in the ascending sequence of pararketdihen it is divided into subpopulations with
approximately same number of individuals. For eXxamip the population contains 200
solutions and we intend to divide the populatioto i subpopulations, then in the first
subpopulation 40 solutions with the smallast value would be included. The second
subpopulation would contain the next 40 solutioith \agerx; values and so on. The fifth
subpopulation would contain 40 solutions with tlaegéstX; values. Let us call the
subpopulations "Races" and look at the illustratiepicted in Fig. 11 (a). If the optimisation
space is a two-parameter space, then we can diviely '‘Race" into smaller populations
depending onX, values. Suppose, we want to divide every "Raced 8t smaller
subpopulations. As 40=13+13+14, we would get twapspulations with 13 solutions and
one with 14 solutions. Let us call the small suloytetons "Nations”. At first we sort the
solutions of the first "Race" in the ascending sege of parametet,. Then we include the
first 13 solutions (with the lowest xalues) within the first "Race" into the first ioat, the
next solutions - to the second and so on. Thelglus remaining solutions belong to the
last "Nation" of the first "Race" (see Fig. 11 &ch dividing (or re-dividing) happens at the
beginning of every interaction (it is part of forrgia new generation). The crossover operator
is only permitted within the "Nation" while the sefion operator is performed on the whole
population as if it was not divided.

Further inChapter 4a description of the restricted genetic algoritlnpliesented.
The restricted genetic algorithm contains the falhy steps:

1. generate initial population as set of random numkieay, population of 200
solutions);

2.calculate the fitness valug of each solution and its relative fitness (from the
"floor" Yo) YrenaiveYi - Yo, whereYy= min (Y));



3. save the results;
4. divide the population into 5 Races by assigning mluenber of Race to every
individual:
4.1. sort the population in the ascending sequafcparameter Xi.and to the
first m solutions (say, to the first 40 solutioasyigrRaceNumber=l;
42. to the next 40 solutions having higheralues of Xi assign
RaceNumber=2;
4.3.to the next 40 solutions assigaceNumber=3;
4.4.to the next 40 solutions assi@aceNumber=4;
4.5. to the last 40 solutions assiBaceNumber=5;
5divide every Race into 3 Nations by assigning numb&rNation to every
individual:
5.1. sort the population in the ascending sequaicparameter X2.and to the
first m solutions (say, to the first 13 solutioasyign NationNumber=l;
52. to the next 13 solutions having highaeralues ofx.2 assign
NationNwnber=2;
5.3. to the last 14 solutions assidggtionNumber=5;
6.in cycle over all Races and all Nations: sort th&utens of the certain nation
in the descending sequence Wf Assign the couple identification numbers:
CoupleNumber=l for the first two solutions,CoupleNumber=2for the next
two and so on (coupling operator, used in Multiiayenetic algorithm);

7.cross-over (the region-based crossover operatoictddpin Fig. 1) parents
(solutions with the same couple number, belongimgthe same Race and the
same Nation) to obtain 2 children. In case of bp#inents being copies of the
same solution, mutate the one of the parents arid twldren. The mutation
is performed by re-generating one of the parametdues (chosen randomly)
accordingly to uniform distribution in the wholange of the solution space;

8. calculate the fithess valu¥j of each solution and its relative fitness (from the
"floor" YRelative i=YiYqwhereYe=min(Yj);

9. calculate survival probabilitELPROB(with which it will be selected for
the next generation) for every solution —Yﬁ"; d

Relative |

10. calculate cumulative  probability CUMPROBI for i-th  solution as
CUMPROB ; +SELPROB;

11. perform roulette wheel selection ( Population_8ires );

12.check if the final condition is met (for exampld, 100 iterations has been
performed). If it is not, then go back to steptBeownise end the procedure.

In Chapter 4an example of the restricted genetic algorithm waykvith population of

24 solutions in the task of maximization of "volicdrshape function is described. It is a
detailed analysis of a real experiment having tlewing parameters:

The size of population Poputation_Size=24, the terminating condition is

Loop_Count=12the probability of crossoveZrossoverRatet and number of children in
one family is 2 (every couple has two childreng, type of crossover is



"Region- based"the type of the function i§Volcanic shape"the type of algorithm is
"Restricted",number of RacefRace_Count-Zand number of Nationblation_Connt=2.
The search space is delimited by inequalities:

20 x4 2.0 20 X 2.0

At first the initial population is generated aseaaf solutions. Each parameter of every
initial solution is generated as a random numbenrtérval ]-2; 2]. After that the function value
Y is calculated. The initial population of the esipeent is shown in Table 7.

The initial population Table 7

NE P Tl Y NR X1 X2 Y

1 0.4 22 10,7 E -1,56| 041 £,55
2 -D,8 ~1,15 9,7 4 g.% ; 10,30
: 0, 0,23 36 5 -1 -1, 740
4 1,% 0,564 § 6 66 90| 2

5 0, 1,92 621l 17 39 7 X
6 0,1 1, 10, 18 09 0,7 104
7 -13 0,25 10,0 19 127 -1,1 7,7
[ 0, -0,91] 20 16] 415% 109
9 ), -0,14] g 21 -1,13 [ 10,21
10 035 0.9 s » 1,54 147 8,87
11 .15l -0,73) 805] 23 047 1,27 1036
12 -L,09 13 7 24 0,92 1,52 7,38)

The initial population has to be divided into sytylations called "Races" (step 4 of the
restricted algorithm). At first, the solutions aserted in the ascending sequence of the
parameteiX;. To the first 12 solutions the Race=l is assigied,to the next 12 solutions
Race=2 is assigned. The population, divided intoreces is shown hi Table 8.

The initial population divided into Races Table 8
INR| X1 | X2 Y Mg] NR | X1 | X2 | v [RACE]
13] -1.56 041 8,55 3 | 000 023 364 2
1] - ,5_;} 0,73 8,05 5 25 192 621 2
7 -13 25 10,08 0 K] 19] 5,12}
19 127 117 7,74 4 ] 0, 1,300 1030
5] -1 13 740 3 | 047 -127] 1034 -
2 - % )2 10,21 22 | 054 147 8.8
p -1, 31 7 g | 083 014 7 F
4| 0 52 74 18 079 10,41 3
-0, -1,15 9, 20 16 054 1091 3
0,47 2] 10,7 17 39 074 79 2
040 09 9.0 4 e O
0,19 ; 10,1 16 190 2,08 ¢

Next the races are divided into nations (step thefrestricted algorithm). At first, the
first race is sorted in the ascending sequencheoparameteXi -The first 6 solutions obtain
Nation=l, but the next six get Nation=2. After titta second race is sorted in the same way and
again, the first six solutions are included hfiitst Nation,



but the -next six- in the second. The papoh, completely divided into
subpopulations is depicted in Table 9.

The initial population divided into Races and Nagio Table 9

NR X1 | x2 X RACE EATION NR X1 X2 ¥ RACE NATION
15 S0 o130 74 5 02s] 192 621 2 1
19 =127 -L17  7.74 i 047 127 1034 2 1
2 087 1,15 9,72 § 09 079 1041 2 1

g 0400 09 9,08 20 g6l 054 1091 2

11 -15 0, 8,05 9 ), 014 7 2

7 -138 0, 10,05 10 1% o19] s121 2

21 1120 o 10,21 2 3 000 023 364 2 2
13 -1.560 04 8,55 ] 4 14 0,64 893 2 2.
3 -0,1 13 1008 1 2 17 1 )74 8, 2 2

1 04 22 1074 1 2 14 0, 10, 2

12 -1 31 780 1 2 22 A 887 2 2
24 0, S ——Taft=1 2 16 166 190 208 2 2

Then the coupling operator (step 6 of the resttietgorithm) follows. The solutions
belonging to the same Race and same Nation aezlsorthe descending sequence of the
function value Y . The first two solutions are gasid Couple = |, the next two are assigned
Couple = 2 and so on. The initial population witisigned couple numbers is shown in
Table 10.

Initial population, divided into couples Table 10
[NR| X1 | X2 | ¥ [RACE [NATION [COUPLE|NR| X1 | X2 | ¥ [RACE [ NATION | COUPLE
7 [ -138 025 12,@] 1 20| 1,36] -054 1091 2 1 1
2 | 087 -1.15 9,72 18] 1,09 -079 iodl] 2 1 1
8 | 040 091 9,05 2 23| 047] -127 1036 2 1 2
(11 [ 1,51 0,73 805 2 9 ,1:4 0,14 790 32 2
19 | =127 1,17 7,74 3 5| 023 199 621 2 2
15 | 1200 <1300 7400 1 1 & 0] o039 o019 512 2

1| 047 1,29] 10,7 2 14| 042 130 1030 2 2

21| -1,12] 0.28] 10,2 2 4] 142] 064 B93 < 2 1
6 | 019 113] 10, 2 2 22| 054 147 BT ¢ 2 2
13| 154 041 853 2 2 17 074 &7 2 2
1221 -109 131 790 2 3 3 [ 000 023 f 2 3
2| 099 1.5 74 2 31161 166 190 208 2 P 3

The solution space and the initial population dididnto Races, Nations and couples
are depicted in Fig.8. The solutions, belongintheosecond Race are black, other solutions
belong to the first Race. The solutions belongmthe first nation are denoted with rings,
while those belonging to the second one are deneitbdriangles. The members of every
couple are connected, therefore we can evaluatpdbsible location of their children.
Larger rings (or triangles) have a higher fitheslserY.
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Fig. 8. The initial population - divided into Racestions and couples.
The circle marks the target line (of global maxing)m

Next the cross-over operator is performed (sted the restricted genetic
algorithm). The region crossover is exactly the samhich was used in
Multilayer genetic algorithm. The parameters of tbkildren X; and X, are
generated as random numbers in the area delimite¢pdvameter values of
their parents. The only difference is that bothep#s in every couple have not
only similar Y values, but also similat, and X, values. The children with their
parents are shown in Table 11.

Children generation from parents Table 11
INR [Rn| Nn_|COUPLE COU X1 | x2 Y
i 1 114 061 10,87
g 1 24 067 10,57
i 079 104
4 % 0,54 10,91
5 ) g 052 035 643
6 =3 =1 2 2 049  -100 9,93
5 [ 2 7 082 014 7,
3 2 2 014% -127 10,
9 3 : 0, 093 9|
10 3 3 034  -177 7!
1 3 3 -ogﬂ -199 62
12 3 3 03 319 512
3 2 2 047 0, 95
4 2 2 09 123 90
5 2 2 14 64 ;
16 : 2 042 130 10
17 f 2 2 2 o6 133 94
I’R[1] 2 2 2 2 0,82 %t 7
(19111 2 2 2 2 3 ug 7
T ) 2 2 2 54 A 87
21 3 3 3 8 10,3
22 ; 3 3 it E_
23 2 3 g 00]
% 2 g 66l 1900 208




In the column titles of Table 11 the following teabbreviations are used:
"Race" is replaced with Rn (Race number), but "bdlatiis replaced with Nn (Nation
number).

Next the fitness value Y and its relative value ¥l&ive for every solution is
calculated (step 8 of the Restricted algorithm)e Tlinction value of volcano-shaped
function can be calculated using expressions (B9) @nd (11). Then the minimal
value of Y is found: Y_min=2.08 (it is 48solution in table 11). From step 8 we
remember that Yo=Y_min, therefore the "floor" ofsttpopulation is 2.08. Now the
relative fitness value of every solution can beadied:

Yrelative i= Yi -Yo

For example, for the third solution:
Y relative 3= Y 3 - Ymin= 9-72 - 2.08 = 7.64

The obtainedy Relative values for all 48 solutions are shown in Table TBe
column title "Nr" denotes the identification numhadrthe solution.

Values of Y_ relative Table 12
NR[Y_RELATIVE[NR|Y RELATIVE[NR]Y TIVE[NE[Y RELATIVE]
7.08] 13 8,33] 25 8,731 37 586
2 843 14 13] 26 A9] 38 5,81
3 7,64] 15 66] 27 1331 39 585
4 7,97 16 ,12] 28 4,83] 4 21
3 6,60 1 68] 29 735 4 7
6 6,55 4,26] 30 85 42 7,64
7 6.97 810§ 3 B 43 6,71
597 20 6464 3 B2 44 6,7
7 5,830 21 495 00 45 23
0 542 22 547 34 5,11] 46 9
1 532 23 5.82) 35 4,12] 47 55|
2 5,65] 24 5.29] 36 3,04] 48 0,00

After that the sum of all Y relative is calculateahd  Ygejative j= 310.67 The
survival probability (probability to be selected filhve next generatiorSELPROB is
calculated (see step 9 of the restricted genegiorahm):

Yﬁﬁm i

SELPROB, = —
j};‘ll’xm J

For example, for the third solution the calculatiof SELPROB 3 can be done
using the equation in such a way:,

Relative 3 _ 7.64
310,67

Y
SELPROB, = =0.0246

2 ¥ retative j
=i



Then we can obtain the cumulative probability (sesp 10 of the restricted genetic
algorithm) CUMPROB for i-th solution alCUMPROB;; +SELPROB; . Therefore for the
third solution we have:

CUM PROB= CUM PROB +SELPROB = 0.0499 + 0.0246 = 0.0745

The calculated values of survival probabilities aohulative probabilities of all 48
solutions are given in Table 13.

Survival probabilities and cumulative probabilities Table 13

NR NR SEL KUM PROB
0,022 5 0,0281 },5453
2 0,0271 26 0.0273| 1,572
3 0,024¢ 27 0,0268] ),5995
4 0256 28 0,0284 6279
5 021 29 0,0140 641
6 02 0,14 30 0,0253 667
7 0,022 ),164 31 0187 0,685
3 0,0192 184 32 0268 0,7125
) 0,0188 .zgz_i 33 02251 0.7350
0 0,0174 220; 34 0164 0,751
1 0,0171 2374 35 L0133 0,7647
2 0,0182 25 36 .0 10,7745
3 0,026 )28 37 0,018 0,7934
4 0,028 38 10219 0,8153
027 33 39 220 8373
16 026 40 0264 8638
7 024 13874 41 0,0237 ),B875
[ 0137 401 42 0,0246 0,912
g 026 A271 43 0,021 0,933
20 ,020 A4 44 ),021 0,9555
21 .ﬁ A6 45 ),026 !,9%
22 0176 48 46 ] ,995
23 0187 47 )0¢ ,0000|
24 0,0170 0.51 48 0,0000{ ,000q

Next the roulette wheel selection is performed ies (see step 11 of the restricted
genetic algorithm). The roulette-wheel selectioagplied to both parent and children solution
intermediate population. It means that 24 randombars belonging to interval ]0; 1] are
generated. Once RAND=0.1789, we can figure oultitlpaints to the roulette wheel segment
denoting the eight solution (see Table 14). Whesoate moment RAND=0.1836 , pointing to
the same solution is generated, it is saved ifielte RAND1 . As every solution in this task
can be chosen 3,4, ...24 times, other fields RAND®\D3, RAND4 etc. were used, but in this
experiment only twice-selected cases appeareddataeobtained during the execution of the
selection operator is collected in Table 14.



Data used in the roulette-wheel selection Table 14

The second population was obtained as a set aftedlsolutions and it is shown in
Table 15.



Next the new population is divided into Races, di@iand couples, and the obtained
subpopulations are slightly moved (see Fig. Onmside.

Fig. 9 The second population - divided into Rab&gjons and couples

In Fig. 9 one can observe that in the second cafplee ' Race and L Nation both
parents coincide, i.e. they are copies of the ssohdion. That leads to the mutation of a
randomly chosen "Mother's" parameter. In the samg the both children are mutated (the
similar situation was described in the multilayigoathm).

Next in Chapter 4the author describes a series of experiments. Tdénmization
of "stool" function, "volcano-shape" function amngidved bowl" function are performed by
means of the restricted genetic algorithm. Thetffeness



of the restricted genetic algorithm is compared hwithat of multilayer
genetic algorithm and classical genetic algorithm.

The "stool" function has four global maximums @@lution space is enlarged
now if we compare it with the first series of exipeents). The "stool" function is
depicted in Fig. 10 (see case a). Its cross-seetitinx,= 0 is shown in Fig. 10 (b).

Fig. 10. The "stool" function which was used td tee uniformity of population clouds in classical
genetic algorithm, multilayer genetic algorithm aredtricted genetic algorithm: three-dimensional
picture (a) and cross-section wKb=0 (b)

The "stool" function can be described with expressi(1), (2) and (3). The
solution space parameters' range is:
-1 X1 7 1% 7
"Volcano-shaped" function has already been desdriipeequations (9), (10)
and (11) and it is depicted in Fig.6.
The solution space of the function in the seriesxgferiments was:
2 X 2
2 X 2
The "waved bowl" function is depicted in Fig. 2(ahd it has already been

described by equation (4). The solution space dutle trial of experiments was
the following:

-0.75 x, 0.75 -0.75 x, 0.75

The main aim of the series of experiments was:



1) To verify that the restricted genetic algorithm dble to search in opposite
directions, while the classical is not.

2) To verify that the restricted genetic algorithm hsteonger uniformity within
its population cloud than the classical one.

In Chapter 4the results of experiments are presented. Both ioha experiments
with printouts of their population clouds and tlmergence curves showing means of 18
similar experiments (with different random numbens displayed.

In Chapter 4explanation of the restricted genetic algorithmaviur in maximization
task (of volcano-shape function) is given (see Bigo11).

Fig 11. Fixed moments of the restricted genetiorilyn performance while
maximizing "volcano-shaped" function: 1" (initighopulation (a),8th, 16thand
100th populations (b). The coloured ring is thgetarea.

In Chapter 4he explanation of the behaviour of restricted gerégorithm is given. The
subpopulations of the initial population are apprately of the same size, therefore they
cover approximately the same area. After the seufir survival begins, subpopulations
migrate to the areas of higher fithess, therefugeateas of lower fithess become deserted.



The series of experiments showed that restrictegtigealgorithm can search in four different
directions better than classical genetic algorithmmultilayer genetic algorithm.

In Chapter 5the author offers a new approach to multicritecjgfimisation problems,
and their solving by means of genetic algorithnise Aspects of search for Pareto set solutions are
discussed. The maxi-min and maxi-max decisionegjies are reviewed and their usage to optimisation
with genetic algorithms is considered.

In Chapter 5the simultaneous maximization of two functions igcdssed (see Fig 12 (a)). The
functions can be calculated by the following eaqureti

Here, equation (13a) must be used to calculatirghéunction (criterion) Fl, but equation
(13b) must be used to calculate the second fun€foifthe parameters' range is:

-1 0 x, 3
-1 % 3

As can be seen from the equations, the maximatifumealue is 18.5.

If we apply maxi-min decision strategy to the biothctions, then the objective function
at every point of the solution space can be oldaiseminimal value of die both functions (see
the cloud of initial population in Fig. 12 (b)). Mhaxi-max decision method is applied, then the
value of the objective function can be obtainethasnaximal value of the both functions (see
the cloud of initial population in Fig. 12 (c)).\Mfe use classical genetic algorithm to search for
maximum of these new objective functions thai itleldind a single solution, but the solution
found for objective function in Fig.12 (b) would vee coincide with the one found for
objective function in Fig. 12 (c). The question isow to obtain several diverse solutions by
means of genetic algorithm so that a decision makeris not sure about his strategy (maxi-
max or maxi-min) can obtain the best solutions@mparison and consideration?



Fig 12. Two functions which were used for the tadksimulianeous maximisation (a) and the
initial populations showing objective functions rifaxi-min decision method (b) or maxi-max
method (c) is used. The level planes show the \afltiee mean fitness in each of the populations.

Further in Chapter 5 the multicriterial optimisatiaith genetic algorithm without
usage of decision strategies is described. If andamly chosen criterion is used as the
objective iunction for some solutions while theest{randomly chosen) criterion is used
as the objective function for the remaining sologipthen optimisation would proceed
according to the values of both criteria (see F3).

Fig. 13 The initial population for simultaneous
optimisation of two criteria without usage of eithe
maxi-min or maxi-max decision strategies. The level
plane shows the value of the mean fitness of the

population

The experiments Chapter 5prove that in such optimisation (without the deisi
strategies) the solutions belonging to the Pamdtars found. The Pareto set of the problem,
depicted in the Fig. 13, is displayed in Fig. 14.



Fig. 14. Parelo set in (ask of two criteria maxatiin displayed in Fig 12 (a). The 1" populatiod te 50th
population of the restricted genetic algorithm wihensubpopulation number is 4 (2 races and 2nsdtio
every race)

Next in Chapter 5 an example with the restricted genetic algorithm
maximising two criteria (see Fig. 2 (a)) is givefhe parameters of the
experiment were the following: the population siak the restricted genetic
algorithm Population_Size=24the rate of crossove€rossover_Rate=1ithe
terminating conditiorLoop_Count=6;the number of raceRace_Count=2the
number of nationdNation_Count=2;crossover type region - based crossover,
objective functions - twdbroken slope'functions (see Fig.12 (a))

At first the initial population is generated as dam numbers in interval [-1;
3]. After that both criteria values are calculatéithen, if a random number
RANDI ]0; 1] is less or equal to 0.5, the fitness valaeassigned equal to the
value of the first criterion y=FUNC_I, otherwise i assigned equal to the
second one y=FUNC_2.

The initial population of the experiment is shownTiable 16.

The process of dividing the initial population intaces is shown in Table
17. The solutions are sorted in the ascending seguef the parameter xi. To the
first 12 solutions thdRace=lis assigned, but to the next 12 solutidtace=2is
assigned (see Table 17).



Next the initial population is divided into natioaccording to the values of
parameterX,). The initial population divided into races andtinas is shown in
Table 18.

After that the initial population is divided intooaples (see Fig. 15)
depending on Y value of every solution. The shadiegjonal region is the target
area (of Pareto solutions).

Fig. 15. The Initial population, divided into ragestions and couples



As we can see, the restricted algorithm works mshme way as it did in
the case of the optimisation of only one criteridhe next four populations of
the experiment, divided into races, nations anchtamiare depicted in Fig. 16.

Fig. 16. The location of Populations, divided iaices, nations and couples in tr’?%,z”d Ath and 5th
generations in simultaneous maximisation of twidareslope functions with the restricted genetiordlgn

Next in Chapter 5the usage of the restricted genetic algorithm ie th
optimisation of n criteria is described. The stepshis case of algorithm are similar
to those when the optimisation of one criteriorp&formed. The differences in the
description are marked by the shifted cursive:

l.generate the initial population as a set of ramd numbers (for example, 200
solutions);

2.generate  a random number RAN® 1] for every solution. If
(I/n)*(m-1) £ RAND £ 1/n)*m where n is the number of criterion to betiopsed
and m is a natural number, then the value ofm tecion is (randomly chosen) to
be the fitness value for this solution;

3.calculate the fitness valu¥; of each solution (as value of the criterion chosen
step 2) and its relative fitness (from the "floo¥0) Ygelative=Yi-Yo .where
Yo=min(Y;);

4. save the results;

5.divide the population into 5 Races by assigning thember of Race to every
individual:

5.1.sort the population in the ascending sequence odmeter xi.aud to the first m
solutions (say, to the first 40 solutions) assigac&Number=l;
5.2.to the next 40 solutions having higher valuexpéssign RaceNumber=2;
5.3.to the next 40 solutions assign RaceNumber=3;
5.4.to the next 40 solutions assign RaceNumber=4;
5.5.to the last 40 solutions assign RaceNumber=5;

6.divide every Race into 3 Nations by assigningnber of Nation to every
individual:

6.1.sort the population in the ascending sequence oampeter x2.and to the first
m solutions (say, to the first 13 solutions) asdigtionNumber=l;
6.2.to the next 13 solutions having higher values ofis2ign NationNumber=2;



6.3. to the last 14 solutions assign NationNumhber=5

7.in cycle over all Races and all Nations: sod #olutions of the certain nation in the
descending sequence of Y. Assign theuple identification  numbers:
CoupleNumber=l for the first two solutions, Couplehber=2 for the next two and
so on (Coupling operator);

8.cross-over (the region-based crossover operdepicted in Fig. 1) parents
(solutions with the same couple number, belongmghe same Race and the same
Nation) to obtain 2 children. In case of both p#sebeing copies of the same
solution, mutate one of the parents and both ehnildiThe mutation is performed by
re-generating one of the parameter values (choserdomly) accordingly to
uniform distribution in the whole range of the sioln space;

9. generate a random numbeRAND/]0; 1) for every solution. If
(I/n)*(m-1) £ RAND £ (1/n)*m where n is the number of criterion to betimised
and m is a natural number, then the value of m itern is (randomly chosen) to
be the fitness value for this solution;

10. calculate the fitness value Yi of each solution akie of the criterion chosen in
step 9) and its relative fithess (from the "flbolyo) YRelative=-Yi-Yo  .where
Yo=min(Y;);

11. calculate survival probability SELPROB; (with whiitlwill be selected for the

next generation) for every solution as

12. to calculate cumulative probabilityCUMPROBI for i-th soluton as
CUMPROB,; +SELPROB;

13.to perform roulette wheel selection (Populatione$ines );

14.to check if the final condition is met (for examplé 100 iterations has been
performed). If it is not, then go back to the #teptherwise end the procedure.

At the end ofChapter 5the serial experiments of multicriterial optimisati are
considered. The task of simultaneous maximisafiona"broken slope" functions (see Fig. 12
(a)) in parameter regioxy] ] = 1; 3] andx,l ]=1; 3] with the classical genetic algorithm,
multilayer genetic algorithm and the restrictedegienalgorithm was performed. After that the
task of simultaneous maximisation of two "volcahesed" functions (see Fig. 17 (a)) in
parameter regioX;l ] -2.0; 2.0] andx,l ]-2.0; 2.0] with the means of the same genetic
algorithms.

To solve both tasks, Maxi-Min, Maxi-Max and no-stgy approaches were used.

The equations of the both "broken slope" functiomse given above (see equations
(12), (13a), (13b) and (14)).

The "volcano-shaped" functions are described bfollmving expressions:



The parameters' range is:

2EXNE2 -2EXE 2

Equations (16a) and (16b) both describe &nd expression (16a) appertains to the
criterion Fl, but expression (16b) appertains eodtiterion F2 (see Fig. 17).

Fig.17. Two "volcano-shaped" criteria in the paréenspace: three dimensional representation (a);
cross-section withX,=0 (b)

As can be seen from Fig. 17, the solution of theukaneous maximisation of two
"volcano-shaped"” criteria problem are points A 8naf the solution space, because there
both criteria have the highest value. The experissinowed that Maxi-Min strategy is the
most suitable to find the Pareto set solutions.

Chapter 6describes the application of the genetic algorithonthe solution
of a real optimisation problem.
The task is to find optimal weights for a neurawmk. Let's assume that a neural
network having weighta/; for input signals and output signad and using sigmoid function
as the activation function, has the following atiedy expression to describe its output:

The graph of the sigmoid function is shown in ER}.



The neural network is supposed to solve the camtiXXOR problem (on real numbers),
and it is trained by using the solution set thgiven in Table 19.

The task is to maximize the minimal of all fitnesdues for each solution (see Table 19).
The structure of the neural network is shown in £y

Fig. 19. The structure of the neural network s@wontinuous XOR problem



The structure of the neural network was transforimeda genotype of genetic algorithm,
represented by a string of real parameters. Taetste of the string is represented in Fig. 20.

Fig. 20. The structure of the string

To accomplish the task, the Wright genetic alganmititlassical genetic algorithm,
multilayer genetic algorithm and restricted genaliorithm were used. From the experiments
it can be seen that the multilayer genetic algarifolves the problem in fewer iterations than
the classical genetic algorithm, because in 18 rerpats the mean fitness value of the
population reached the value of global maximum @ §eneration for classical genetic
algorithm, but in 30* for the multilayer one (seg.El case b and c). In the experiments with
the Wright algorithm some increase in the valuthefmean fithess value was observed even hi
the 108 generation (see Fig. 21, a).

In experiments with the Wright algorithm 4 trialstoof 18 didn't reach the global
maxima (with its fitness value 1), but reached s@oiations with fitness value 0.4, which,
probably, is the local maxima of the fithess funrttiln all the 18 trials using this algorithm
the mean value of the fithess was less than itsmaduvalue, which can be explained by high
rate of mutations (rate of mutations was 0.2)Isth anight show that the solutions found by this
algorithm do not have high precision.

Fig. 21. The mean and maximal fitness values itria& while optimising the weight vectors of
the neural network shown in Fig. | 9, using: ae Wright algorithm, b - the classical genetic
algorithm, ¢ - the multilayer genetic algorithm

Experiments with the classical genetic algorithravedd that 6 trials out of 18 don't
find the global maxima. In the successful trials thean value of the fitness coincides with
that of the global maxima and it proves that thet selution is found.



Experiments with the multilayer genetic algorithrarev the most successful: only one
trial out of 18 could not find the global maximao# of the experiments showed a rapid
growth of the mean fitness value in the first 120@rmenerations. Extremely rapid growth was
observed in 5 trials when the global maxima washegin the first 10 generations.

Similar experiments were performed with the redgenetic algorithm (see Fig.22 a,
b), but they were very time-consuming. Every tt@dted approximately 2.5 hours (for
comparison - it took the multilayer algorithm 30noties, but the classical and Wright
algorithm only 20 minutes to perform every singl|m)r The terminating condition was the
number of generations = 100. The population siz28@8 in all the experiments, except for the
restricted algorithm with population size 1600.

Fig. 22 The mean and maximal illness values in ridlst while optimising the weight
vectors of the neural network shown in the Fig.18ing the restricted genetic algorithm:
a - mean values of 18 trials, b - in every trigiaately

The restricted genetic algorithm didn't reach thabgl maxima in 4 experiments of
18 (see Fig. 22, b), which is similar to the resbtiined by using the Wright algorithm. On the
other hand, we can observe a rapid growth of thenrfiness value, which is similar to that of
the multilayer genetic algorithm.

Next in Chapter 6an application of genetic algorithms to a more derpeural network
weight optimisation problem is demonstrated. Ia #pplication, the neural network is supposed
to recognise hand-written figures "1", "2" and "3".

For the experiments, a set of 15 hand-written &guwvas used (see Fig. 23). Every
figure is encoded as a set of 9 binary paramdtethe beginning, the recognition for all 10
figures was developed. A neural network with 9 isp® neurons in the first layer and 10
neurons in the second layer was created, butthftefirst runs the memory of the computer
turned out to be too small and the processor sipeetbw for such a huge task. Therefore a
new neural network was developed, consisting @fpits, 5 neurons in the first layer and 3
neurons in the second layer (see Fig. 23).



Fig. 23. The structure of the neural network s@wiecognition of hand-
written figures "1", "2" and "3"

Then the data used for the neural network fithessutations are shown (see Table
20).

As in the previous application, the activation tiot of this neural network is a sigmoid
function (see Fig. 18). The structure of the reshmeters string was similar to the one shown
in the Fig. 20 with the exception that in theseeeixpents the string consisted of 68 parameters
(not only of 17). As the optimisation has to baiedrout in the space of 68 parameters, various

combinations of the parameters give us variousegabf the output signal. Suppose we have
a training set consisting of patterns



shown in Table 20. Then the weighted input sigrfaw@ry sinde neuron iscalculatec
according to this equation

As this neural network has 68 various values ofjisj even the obtaining of the value
0.00001 in the output of this complicated neuralvoek will be a very rare phenomenon. For
example, there were 3820447 random solutions geberated to obtain just 50 solutions with
fitness larger than 0.00001. Therefore, the infigulation was not generated as randomly
generated solution space, but as randomly genesatkdfter that selected as solutions which
had their fithess values larger than 0.0001.

In Chapter 6the calculation of fitness for every solution i®wh. The fitness of every
combination of weights was calculated from the &alof the errors. The error for the net
output number | and training pattern number k @odiculated as

E“=|d*-0"  ,wherei=1,23 ,but k=I,2..15.
The fithess of every output of every neuron candbeulated as
L*=1-E* ,wherei=l, 2,3 ,but k=I,2..15
The fitness of the solution is calculated as fodow
L=min(L*) ,wherei=l,2,3 ,but k=1,2..15

From this equation we see that if at least onehefdrror values E was larger than
0.99999, then the fitness of the solution was teas 0.00001 and the solution was not
included in the initial population. If any of théspring had such a low fithess value, then it
had some chances to survive.

In Chapter 6the results of the experiments are shown (se@#&)g.

Fig 24. Recognition of hand-written figures "1",""@nd "3" - the mean and maximal
fitness values in 10 trials: a - Wright geneticalthm, b - classical genetic algorithm
and c - multilayer genetic algorithm.

From the fitness values depicted in Fig. 24 itlbarseen that multilayer genetic algorithm
has found a solution in all 10 experiments in melier generations than Wright genetic
algorithm (see Fig 24 cases a and c). The clasgmabtic algorithm showed premature
convergence in 9 trials from 10 by concentratirggghpulation around solutions which didn't
have maximal fitness (see Fig 24, case b). Welsan a



see that in this 68 dimensions solution space Wriggnetic algorithm is more
effective than the classical genetic algorithm, atthis an opposite feature to that we
observed in 2-parameter solution space, becauseaweobtain a larger variety of
solutions via recombination of 68 parameters thath wecombination of just 2
parameters.

The fitness values of the first 5 trials for eatdpoaithm are depicted in Fig.25.

Fig 25. Recognition of hand-writlen figures "12" and "3" - the mean and maximal fitness
values in (he first 5 trials: a - Wright geneligatithm, b - classical genetic algorithm and c
- multilayer genetic algorithm.

The restricted genetic algorithm was not used iis thpplication of figure
recognition, because it is too time-consuming. ®& dther hand, the performance of
multilayer algorithm was so good, that it didn'tquére searching in separate
subpopulations. We know that search in separate@uidations will certainly
increase time, but we also must be aware that jt warsen the result (see Fig 22 of
the previous application).

Chapter 7 contains the conclusions and the main advantaged an
disadvantages of the offered genetic algorithmsoAhe perspective of the further
research is given.

The appendix provides software printout and techindocumentation to
repeat experiments with the described algorithnie $oftware was developed in the
FoxPro 2.6 for Dos.



THE MAIN RESULTS OF THE WORK

The results of the doctoral research are the falgw

1

The usage of genetic algorithms in shaping newdtgve" solutions for a
multicriterial problem is tested experimentally. efimability of the genetic
algorithm to generate "bad" solutions (if required) the basic training with
"good" solutions is formulated and theoreticallynsalered. The software
"Genalg" is developed to generate new "creativelusons by means of
genetic algorithms for the specific object field.

. The phenomenon of premature convergence gehetic algorithms is

formulated and examined. Particular cases of omation of multimodal
functions are explored and reasons of prematurevexence of genetic
algorithms (in them) are explained.

A new genetic algorithm is proposed (restricted egenalgorithm) which is
very suitable for multimodal function optimisatiothe behaviour of the
restricted genetic algorithm is explored and comepatio that of the classical
genetic algorithm experimentally. The differencetle behaviour of the both
algorithms and its reasons are considered theathtic

The drawbacks of optimisation of functions whichntain regions of global
optimums are studied. Experiments to achieve unifdistribution of diverse
solutions within the population were performed. Approach to the usage of
the restricted genetic algorithm as more effecfimefunctions which contain
regions of global optimums is offered. A new tastdtion to verify the ability
to search for diverse solutions is suggested (valeshaped function).

The ability of genetic algorithms to search for thareto optimal solutions is
examined. The phenomenon of uneven density of @djmul of the classical
genetic algorithm while searching for Pareto optis@utions is observed. An
approach to the usage of the restricted genetioriéihgn as more effective for
multicriterial optimisation is offered. New testrfctions are proposed.

. The software "Rgenalg" is developed to work witlalrgenetic algorithms

(classical, multilayer, restricted genetialgorithms). It is usable for
optimisation of one criterion or for simultaneoystimisation of two criteria.

An application of the restricted genetic algorithonoptimise the weights of a
neural network (17 parameters), which is supposesotve the XOR problem
on real numbers is proposed.
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