SIMULATION OF LAMB’S WAVES PROPAGATION FROM STRUCTURAL DAMAGE

**Eric Ozolinsh, Ilmar Ozolinsh, Igor Pavelko, Vitaly Pavelko**

Aviation Institute of Riga Technical University, Riga, Latvia
Ph.: (+371)-7089961. Fax: (+371)-7089990
E-mail: Vitalijs.Pavelko@rtu.lv; aviation.institute@rtu.lv

The purpose of the present report consists in studying an opportunity of use of devices for registration of complex signals in thin-walled details of structures. Lamb’s wave properties were used for explanation of dynamic reaction of thin plate surface when in some place there is some source of impulse loading. The experiment on the study of some parameters of propagation of elastic waves in the plate from the Al-Cu aluminium alloy was carried out. Using the Lamb’s waves’ dispersion property, the formal simulation of waves interference was carried out. It was shown that dynamic reaction of thin plate surface could be explained as effect of several waves’ interference.

**Keywords:** Lamb’s waves, damage, simulation

1. INTRODUCTION

One of the most perspective methods of the continuous control of materials and structures is use of properties of Lamb's waves. Lamb’s waves are essentially ultrasonic waves, but they differ from classic bulk ultrasonic waves in their propagation properties. One important basic property of Lamb’s waves is their inherent dispersive nature: the velocity of propagation of a Lamb’s wave is dependent on its frequency or, to be more specific, on the product of frequency and plate thickness. The detection of material damage with Lamb’s waves is based on the fact that the propagation of these wave types is affected by the presence of phenomena like corrosion, cracking or delaminating. Lamb’s wave modes will partially reflect at defects, but part of their energy will also be transmitted, so both configurations can be used for detection. Since the sample materials were typically of thin plate construction, we have concentrated exclusively on the propagation of ultrasonic Lamb’s waves [1, 2] within the samples. Changes in the condition of the sample under test, affected parameters of the Lamb’s wave propagation characteristics, and in this fashion, by the application of suitable signal processing procedures, it was possible to infer the presence and position of structural damage within the sample plates. Previous work [3, 4] has tended to focus on the echo discrimination of signals in a pitch-catch arrangement. This approach can be frustrated by the complexity of Lamb’s wave propagation; for in addition to problems of low signal amplitude and edge reflection effects, the propagation characteristics of ultrasonic Lamb’s waves can exhibit considerable pulse velocity dispersion and complications due to multiple mode propagation [5, 6]. Some novel approaches to addressing some of these problems have included processing to enhance defect visibility [7], system identification [8] and signal regeneration [9, 10, 11].

Lamb’s wave technology can be used in both an active and a passive manner:

- active: selected Lamb’s wave modes are injected into the structure, information about the damage state is deduced from observed reflected/propagated waves
- passive: Lamb’s waves are generated by the process of damage formation and are detected by suitable sensors; this technique is also known as modal acoustic emission.

The main contents of this article assumes research probably more common regularities of propagation of passive Lamb's waves at presence of a various kind of damages of materials, elements of structures and their joints.

As it is known, at use of a method of acoustic emission (AE) the main difficulty consists in adequate interpretation of results of measurement. The model “damage – signal” creation is base of successful application of AE method for NDI of structures [12-14].

Many devices for registration of signals AE use quantity of pulses that is proportional to quantity of fluctuations of a surface in a place of statement of the receiver of signals as parameter.

The purpose of the present report consists in studying an opportunity of use of devices for registration of complex signals in thin-walled details of structures.
2. EXPERIMENTAL INVESTIGATION

It is carried out the experiment on the study of some parameters of propagation of elastic signals in the plate from the Al-Cu aluminium alloy (analogue of 2024-T4).

The experiment was produced using the special device. Its scheme is shown on Figure 1.

The plate is located on two supports. The distance between the supports was 50 cm. The length of the plate is 1 m. Cross-section width is 40 mm but the height (a thickness of the plate) is 5 mm. It was produced the free dropping of the fixed mass from fixed height on this plate. Thus the constancy of energy of impact was ensured; equal to 0.1 J. The elastic oscillations of surface were measured with piezoelectric gauge that was located at a distance of 5, 25 and 45 cm. There were conducted the multiple repetitions of the impacts for definition in each of them number of AE pulses. Results are shown on the Figures 2 and 3.

It is visible, that at ranges of frequencies 200-1000 and 500-1000 kHz number of AE pulses grow at increase of distance between AE source and the gauge. The confidential intervals with probability P = 0.95 are shown also.

Pulses of AE with different frequency are distributed with different speed and consequently at a great distance they are divided. Thus, the gauge on the greater distance fixes more pulses of AE.

Pulses of AE have different frequencies. It means that there are different speeds of distribution. At a great distance pulses with different frequencies are divided on a part. Thus, the gauge on the greater distance fixes more pulses of AE.

These dependences have more complex character. But at a range of frequencies of 200, 500 and 1000 hertz quantity of AE pulses in the beginning and in the end about identical. And here the level is less. Probably here level of AE is reduced because AE signals are imposed and thus extinguish each other. And here grows because of division of signals into parts.

It is visible that curves grow with increase of distance between source of AE and the piezoelectric gauge. It is visible that curves have the complex nature of a change.

3. A METHOD OF FORMAL SIMULATION FOR PROPAGATION OF ELASTIC WAVES AFTER PULSE EXCITATION

Let the elastic, wide plate in length \( L \) and thickness \( \delta \) at the initial moment of the time \( t = 0 \) is exposed to bilateral pulse influence near a cross-section with distance \( a \) from one of the tips. In a result in this zone cross displacements which circuit of distribution is submitted on Figure 4 have appeared. The parameter \( L_0 \) characterizes spatial extent of a pulse.

Initial function of displacements may be spread out on set of harmonious components. In case of a rectangular pulse this decomposition looks like

\[
f(x) = A \frac{L_0}{L} + \sum_{n=1}^{\infty} B_n \cos k_n (x - a),
\]  

(1)
where

\[ B_n = 2A \frac{L_0}{L} \frac{\sin \frac{\pi n L_0}{L}}{n L_0}, \quad \text{and} \quad k_n = \frac{2\pi}{L} \]

is wave number of a harmonious component \( n \).

Figure 4. Scheme of a plate and its dynamic initial loading

After the initial moment of time excitation begins to be propagated, breaking up to direct and return waves. Each of them, reaching the tip of a plate, is reflected and goes in an opposite direction. As against volumetric waves or surface waves Raleigh elastic surface waves in thin plates have property of dispersion (Lamb’s waves). In this connection everyone harmonious component of a compound signal will be distributed with the phase speed dependent on product of wave number on thickness of a plate. The harmonious component \( n \) will have phase speed \( c_n \). At absence of attenuation the oscillations raised in a point of a surface with coordinate \( x \) by a harmonious component \( n \), have the period \( 2T_n = \frac{2\pi}{k_n c_n} \). In connection with various speed of propagation of separate components the form of a total signal at each moment of time will differ from initial. In particular, at the initial stage (at small \( t \)) for points of a surface with coordinate \( x \), a little distinguished from coordinate of section of initial excitation the current form of a signal is described with expression

\[ F(x) = A \frac{L_0}{L} + \frac{1}{2} \sum_{n=1}^{\infty} B_n \left[ \cos k_n (x - c_n t - a) + \cos k_n (x + c_n t - a) \right], \quad (2) \]

It is easy to define the contribution of each component to moving a surface to a point with coordinate \( x \) at the moment of time \( t \). It is defined differently on number of a half-cycle of movement of direct and return waves.

Let the following designations are entered:

1) In an odd half-cycle harmonious component \( n \)

- The direct wave

\[ F^+(x, t) = \begin{cases} \frac{1}{2} B_n \cos k_n (x - c_n t - a), & \text{if} \quad x \geq c_n t_1 \\ 0, & \text{if} \quad x \leq c_n t_1 \end{cases}, \quad (3) \]

- The reflected direct wave

\[ F^-_{mn}(x, t) = \begin{cases} \frac{1}{2} B_n \cos k_n (2L - c_n t - x - a), & \text{if} \quad x \geq L - c_n t_1 \\ 0, & \text{if} \quad x \leq L - c_n t_1 \end{cases}, \quad (4) \]

- The return wave

\[ F^-_{n}(x, t) = \begin{cases} \frac{1}{2} B_n \cos k_n (x + c_n t - a), & \text{if} \quad x \leq L - c_n t_1 \\ 0, & \text{if} \quad x \geq L - c_n t_1 \end{cases}, \quad (5) \]
– The reflected return wave

\[ F_{no}^{-}(x,t) = \begin{cases} \frac{1}{2} B_n \cos k_n (c_n t - x - a), & \text{if } x \leq c_n t_1 \\ 0, & \text{if } x \geq c_n t_1 \end{cases} \]

(6)

2) In an even half-cycle harmonious component \( n \)

– The direct wave

\[ F_{n}^{+}(x,t) = \begin{cases} \frac{1}{2} B_n \cos k_n (c_n t - x + a), & \text{if } x \leq c_n t_1 \\ 0, & \text{if } x \geq c_n t_1 \end{cases} \]

(7)

– The reflected direct wave

\[ F_{no}^{+}(x,t) = \begin{cases} \frac{1}{2} B_n \cos k_n (x + c_n t - a), & \text{if } x \leq L - c_n t_1 \\ 0, & \text{if } x \geq L - c_n t_1 \end{cases} \]

(8)

– The return wave

\[ F_{n}^{-}(x,t) = \begin{cases} \frac{1}{2} B_n \cos k_n (x - c_n t - a), & \text{if } x \geq c_n t_1 \\ 0, & \text{if } x \leq c_n t_1 \end{cases} \]

(9)

– The reflected return wave

\[ F_{no}^{-}(x,t) = \begin{cases} \frac{1}{2} B_n \cos k_n (2L - c_n t - x - a), & \text{if } x \leq L - c_n t_1 \\ 0, & \text{if } x \geq L - c_n t_1 \end{cases} \]

(10)

Number of a half-cycle is defined under the formula

\[ N = \text{fix} \left( \frac{c_n t_1}{L} \right) + 1, \]

(11)

where function \( \text{fix}() \) represents the whole part of the fraction worth in brackets.

Time \( t_1 \) characterizes duration of process in the current half-cycle and is defined under the formula

\[ t_1 = t - (N - 1)t_n \]

(12)

where \( c_n \) is phase speed of a harmonious component \( n \).

4. EXAMPLE OF SIMULATION AND THE BASIC RESULTS

Simulation of the interference making the poly-harmonious signal extending in a plate after pulse excitation of oscillations is executed by a technique stated in item 2. If the top limit of the sum in the formula (1) to limit, the form of a pulse will differ from rectangular, but this signal will consist of the limited number of harmonious components with the lowest wave numbers. Such approach allows to limit consideration by a the signal, making which lay in a range of the wave numbers appropriate to symmetric style \( S_0 \) of Lamb’s waves.

At simulation the following parameters are accepted: \( \delta/L = 0.005, \; a/L = 0.25; \; L_d/L = 0.02. \) They are corresponded to similar parameters in experiment.
If number of harmonious components \( m \) in (1) to limit \( (m = 100) \), it corresponds to the top border of product of wave number on thickness of a plate (at its thickness of 5 mm) that is approximately equal 3. In this range from symmetric styles there is only zero style \( S_0 \). Curve of the spectrum of amplitudes as functions of wave number is submitted on Figure 5.

At simulation the curve of change of phase speed as functions of product of wave number on thickness of a plate can be approximately expressed as a formula

\[
\frac{c_n}{c_R} = 1 + \frac{0.6}{1 + 0.2(k_n \delta)^2},
\]

where \( c_n \) is speed of surface Raleigh’s waves.

On Figure 5 the form of an initial pulse, and on Figure 6, a-c a view of distribution of displacements of a surface is submitted at the moment of time \( t/to = 0.1, 0.5, 1 \), where \( to = L/c \) is time of passage of distance \( L \) by an longitudinal elastic wave with speed \( c \).
Proceedings of the 5th International Conference RelStat’05 Part 2

339

It is visible, that the form of surface waves significantly varies eventually. Thus it is possible to note the tendency: peak values of a total signal decrease, but the number of cycles with rather big amplitude is increased. On Figure 7a-c the process of oscillations is shown at some cross-sections along the longer side of plate. Structure of this process is significantly dependent from a coordinate of section.

5. CONCLUSION

For both active and passive Lamb’s waves technology, one of the main problems that have been encountered in the past lies in the fact that a multitude of modes can propagate at the same time in a structure. The modes have to be separated in order to deduce usable information. On the other hand, the use of multiple modes will provide more information about the damage state than a single mode technique could.

The proposed method of formal simulation makes it possible to more deeply understand nature of the acoustic reaction of the thin-walled elements of structure to the local release of energy from the active or passive source. It is possible to assert with the high portion of confidence, that the number of pulses AE with the impulse excitation is explained mainly by the special features of the interference of the harmonic components of serrated signal, the caused by property of Lamb’s wave dispersion.

Using the Lamb’s waves’ dispersion property, the formal simulation of waves interference was carried out. It was shown that dynamic reaction of thin plate surface could be explained as effect of several waves’ interference.
References


