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Abstract: Nowadays, effective and competitive company operation can be achieved through incorporating the concept 
of supply chain operation into company management. Inventory control, as a critical part of the supply chain 
management, becomes the second most frequent application area for simulation technique in logistics (after 
manufacturing). The dynamics of supply chain operation is characterised by the bullwhip effect that reflects an increase 
in demand variability while moving upwards the supply chain. The bullwhip effect can lead to holding an excessive 
inventory, insufficient capacities and high transportation costs. It is important to investigate the magnitude of this effect 
by quantifying it. This paper proposes an analytical model for the analysis and numerical evaluation of the bullwhip 
effect in supply chains. Simulation technique is used to validate the results obtained from the analytical model. Based 
on the validation results, the logic of the analytical model is examined, and some specifications of the analytical model 
are analysed and described. 
Keywords: simulation, inventory control, bullwhip effect 

 
INTRODUCTION 

Supply chain management is the term used to describe 
the management of materials and information across the 
entire supply chain, from suppliers to component 
producers to final assemblers to distribution (warehouse 
and retailers), and ultimately to the consumer. Supply 
chain management has generated much interest in recent 
years because of the realisation that actions taken by 
one member of the chain can influence the profitability 
of all others in the chain [Silver and Peterson, 1985]. 
The bullwhip effect is considered as one of the main 
supply chain operation stability and efficiency 
measures. It characterises an increase in demand 
variability through the entire supply chain.  
 
Many companies implement the supply chain concept to 
achieve efficiency in system operation; i.e., instead of 
responding to unknown and highly variable demand, 
they share information so that the variability of the 
demand they observe is significantly lower. The 
assumption that a new level of efficiency can be simply 
attained by sharing information and forming strategic 
alliances with firm supply chain partners is wrong. 
Knowing what to do with the data is as important as 
getting the data in the first place [Silver and Peterson, 
1985]. Methods for coping with the bullwhip effect are 
discussed in [Simchi-Levi et al., 2000]. They can 
significantly reduce, but will not eliminate, the bullwhip 
effect. It is important to investigate the magnitude of 
this effect to avoid holding an excessive inventory, 
insufficient capacities and high transportation costs. For 
better understanding and  
controlling the bullwhip effect it is useful to quantify it. 
Simchi-Levi et al. [2000] explain the increase in 
demand variability by the necessity for each supply 

chain stage to make orders based on the forecasted 
demand of the previous stage. They propose quantifying 
the magnitude of increase in variability between two 
neighbour supply chain stages by a function of the lead-
time between the orders receipt and the number of 
demand observations on which a forecast is made. 
Disney and Towill [2002] developed an analytical 
expression for the bullwhip effect quantification from 
the control theory’s point of view by using a z-
transform model. Kelle and Milne [1999] suggest using 
approximations of the quantitative model, developed in 
accordance with asymptotic renewal theory, to evaluate 
a variance of placed orders (bullwhip effect) in 
inventory systems that implement the S-s inventory 
control policy. 
 
This paper proposes a statistics-based analytical 
approach for evaluating the bullwhip effect in inventory 
systems. We focus on the supply chain from the 
perspective of inventory management. We consider the 
simplest of multi-echelon situations when the stocking 
points are serially connected. 
 
The main cause of the bullwhip effect appearance in 
supply chains is uncertainty of demand inherent in 
supply chain operation environment. An analytical 
model for quantification of demand fluctuation 
magnification (the bullwhip effect) as orders move up 
the supply chain in case of stochastic demand is 
developed in this paper.  
Simulation is a powerful tool for analysing inventory 
systems, because it is capable of capturing the 
uncertainty and complexity inherent in inventory 
systems. The ability to handle demand and lead time 
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uncertainty is one of the main reasons why simulation is 
widely used for inventory systems [Bhaskaran, 1998]. 
 
Banks and Malave [1984] identify inventory control 
problems as one of the most frequent areas of 
application for simulation methodology. They propose 
the following six categories of simulation techniques 
usage assignments in modelling and analysing inventory 
systems: 

1. Analytic solution impossible or analytic solution 
extremely complex. An analytic solution to a 
problem may not be available because of stochastic 
operating environment, extremely complex problem 
or a very specific problem. 

2. Comparison of model. It is one of the most 
frequently observed uses of simulation in inventory 
systems. Simulation is used to compare alternative 
inventory control policies. 

3. Validation of analytical solution. Simulation is used 
to validate the results obtained from an analytic 
model. 

4. Variance reduction techniques. Increasing the 
statistical efficiency of a simulation by reducing the 
variance of the output random variables. 

5. Model validation and verification. It is the most 
important part of a simulation study and enables 
determining whether a model performs as intended 
and is an accurate representation of the real-world 
system under study. 

6. Optimisation techniques. Considering optimisation 
techniques for inventory simulation two aspects 
should be determined: the length of simulation run 
and comparison method of different alternatives. 
 

The developed simulation model of the considered 
inventory system validates the results produced by the 
analytical model. The simulation implementation in this 
case corresponds to the 3rd category of simulation 
techniques usage assignments in modelling and 
analysing inventory systems. 
 
The rest of the paper is organised as follows. The 
analytical model for numerical evaluation of the 
bullwhip effect in inventory systems that control their 
inventories by the S-s ordering policy is elaborated in 
the next section. The section also presents a sample 
application of the described analytical model aimed to 
get numerical results. The following sections relate to 
analytical model validation performed by using an 
appropriate simulation model, analyse the accuracy of 
the obtained analytical solution, and discuss a combined 
analytical/simulation approach for evaluating the 
increase in variability of placed orders in supply chains. 
Application of elaborated combined 
analytical/simulation approach is given as well. 
Conclusions are presented in the final section. 
 
INVENTORY CONTROL SYSTEM 

Regular or cyclical in nature inventories with additional 
safety stock are considered. These are the inventories 

necessary to meet the average demand during the time 
between successive replenishments and safety stock 
inventories are created as a hedge against the variability 
in demand for the inventory and in replenishment lead 
time. A method to control such inventories assumes that 
the conditions of demand level, its variability and lead 
time are known and involves the following main steps: 

1. find the current on-hand quantities at the 
stocking point; 

2. establish the stock availability level at the 
stocking point after the demand satisfaction; 

3. calculate total requirements that is the amount 
of cycle stock plus additional quantities needed 
to cover the uncertainty in demand; 

4. determine an order quantity as the difference 
between the total requirements and the quantity 
on hand in case if the on-hand inventory drops 
below the allowed level when a replacement 
order should be placed. 

 
The graphical representation of the above mentioned 
inventory control method is depicted in Figure 1. 
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igure 1: Inventory control method 

The inventory level to which inventory is allowed to 
drop before a replacement order is placed (lower control 
limit or reorder point level) is found by a formula: 
 

z*LT*)X(STDLT*)X(Es += ,  (1) 
 
where 
LT – constant lead time between replenishments; 

)X(D)X(STD =  - standard deviation of the mean 
demand; 
z - the safety stock factor, based on a defined in-stock 
probability during the lead time. 
 
The total requirements for the stock amount or order 
level S is calculated as a sum of the reorder point level 
and a demand during the lead time quantity: 
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LT*)X(EsS +=     (2) 
 
The order quantity Qi is demanded when the on-hand 
inventory drops below the reorder point and is equal to 
the sum of the demand quantities between the order 
placements: 
 

X...XXQ vi1i +++= ,   (3) 
where 
v – random variable, a number of period when an order 
is placed. 
 
While the demand X is uncertain and implementing such 
a type of inventory control method, placed order 
quantity Q is expected to be a random variable that 
depends on the demand quantities. 
The analytical model for numerical evaluation of the 
order quantity Q (the bullwhip effect) is elaborated in 
the next section. 
 
ANALYTICAL MODEL 

A single-item, single-stage, multi-period inventory 
system is considered. The traditional S-s policy is used 
for inventory management. A more detailed description 
of the considered inventory control policy can be found 
in Merkuryev et al. [2004]. 
 
It is assumed that the demand X1, X2, …, Xi is a discrete 
random sample observed from some population. 
Accordingly, these data are independent and identically 
distributed (IID) observations on some underlying 
random variable X whose distribution governs the 
population. Values that numerically characterise the 
population/distribution, such as an expected value E(X) 
and a variance D(X) of the discrete random variable X 
are given. 
 
Provided that the demand X is uncertain and the 
aforementioned inventory control method is employed, 
the placed order quantity Q is expected to be a random 
variable that depends on the demand quantities (3). The 
expected value E(Q) and variance D(Q) of the function 

)X(Q ϕ=  are estimated using the following formulas 
proposed by Feller [1967]: 
 

)v(E*)X(E)Q(E =  (4) 
 
and 
 

)]X(E[*)v(D)X(D*)v(E)Q(D 2+= , (5) 
 
where 
E(v) – expected value of a period number when an order 
is placed; 
D(v) – variance of a period number when an order is 
placed. 
 

To investigate a probabilistic behaviour of the discrete 
random variable v it suffices to estimate its numerical 
characteristics (an expected value and its variance). The 
difference between the order level S and order point s 
has to be established to find a time period when an order 
should be placed: 
 

sS −=∆  (6) 
 

The multi-experimental realisation of the following 
algorithm: 

if X1>∆ THEN v=1 AND STOP 
ELSE generate X2 
if X1<∆ and X1+X2>∆ THEN v=2 AND STOP 
ELSE generate X3 

… 
if X1+X2+…+Xn-1<∆ and X1+X2+…+Xn>∆ THEN 
v=n 
STOP 

allows one to collect statistics of v values (vi, n,1i = ) 
and evaluate their probabilities pi by relative frequencies 
piˆ of their occurrences in the experiments performed. 

 
The expected value of random variable is the weighted 
average of all possible values of the random variable, 
where the weights are the probabilities of the value 
occurrence. The expected value E(v) of the v value 
population is estimated by this formula: 
 

∑=
=

n

i
ii pvvE

1
ˆ*)(ˆ  (7) 

 
and its variance D(v) is estimated as follows: 
 

)(ˆˆ*)(ˆ 2

1

2 vEpvvD
n

i
ii −∑=

=
, (8) 

 
where 

)(ˆ vE  and )(ˆ vD  - experimental estimation of E(v) and 
D(v), respectively. 
 
A numerical example of the developed analytical model 
implementation for the bullwhip effect quantification is 
given in the next subsection. 
 
Sample Application of Analytical Model 
The performance of the inventory system is evaluated 
under various factors such as end customer mean 
demand E(X) and its standard deviation STD(X), safety 
stock factor z and a lead time LT. 
 
To collect a statistics of period numbers v when orders 
should be placed and experimentally estimate their 
expected value by formula (7) and variance by formula 
(8), it is supposed that the end customer demand is 
realised as a normal distribution, and 1000 experiments 
are performed. The minimal value of the observed v 
values for all alternatives is 1 time period and its 
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relative frequency of occurrence is less than 0.007. The 
maximal value is 5 time periods and its relative 
frequency of occurrence does not exceed 0.004. 
Respectively, the most likely value is 2 time periods that 
can occur with the relative frequency greater than 0.5. 
 
Experiments, when the mean demand changes by the 
defined coefficient Change Ratio equal to 1.2 and 
remaining factors are considered to be constant 
numbers, are performed. The mean E(X) and the 
standard deviation STD(X) of the demand change 
proportionally, i.e. they are dependent through the 
Signal To Noise factor, equal to 5, that describes a 
variability of the demand: 
 

Noise To Signal
)X(E

STD(X) =  (9) 

 
The experimentally estimated probability of the period 
number when an order is placed will be the same for all 
alternatives because the S-s level will change in 
accordance with a new mean demand value. Based on 
the observed experimental results the following 
hypothesis could be built up – the relative frequency p̂  
of the random variable v occurrence corresponds to its 
probability p and its value depends only on the lead time 
length. 
 
The estimation of orders variability D(Q) and its 
expected value E(Q) are calculated by formulas (5) and 
(4) respectively, while numerical results are given in 
Table 1. 
By analysing the placed order variability for all the 
performed experiments we can conclude that even a 
small variation of the mean demand causes an increase 
in variability of the placed orders. The larger the initial 
value of the demand variation is, the more significant 

magnification of placed orders fluctuation will be 
observed. 
 
VALIDATION OF ANALYTICAL MODEL 

The considered inventory system has an explicitly 
dynamic character. Simulation is used to capture this 
behaviour of the system and to provide a more realistic 
representation of the inventory system operation, 
namely information about demand and order quantities 
collection over time. 
 
The developed simulation model was used to validate 
the analytical solution presented in the previous 
section. 
 
Conceptual Model of Inventory System 
The structure of the considered inventory system 
corresponds to the analytical model described above. 
 
It is assumed that end customer demands arrive with 
fixed time-intervals, and their quantity is variable and is 
derived from a normal distribution. A constant lead time 
between replenishment is considered. No order 
processing delay is taken into account, so all demand 
events are treated immediately by the inventory system. 
We will also assume no capacity constraints for supplier 
of the inventory system. In this case, stockouts will not 
lead to lost sales, but to backorders. We thus assume 
that we have loyal customers. Therefore, a 
replenishment triggering will be based on the effective 
inventory level, which is the quantity on hand plus the 
quantity on order minus the unshipped backorders to 
customers. The objective of inventory management is to 
manage stable operation of the considered system, i.e., 
quantify and control the bullwhip effect. 

 

 
Table 1: Placed orders variability estimation by analytical model 

 

Nr. E(X) STD(X) z LT s S S-s )(ˆ vE  )(ˆ vD  )(QDcal  )(QEcal  

1 50 10 1.96 2 128 228 100 2.50 0.26 885.64 126.60 
2 70 14 1.96 2 179 319 140 2.50 0.26 1743.30 178.15 
3 90 18 1.96 2 230 410 180 2.50 0.26 2881.78 229.05 
4 110 22 1.96 2 281 501 220 2.50 0.26 4304.88 279.95 
5 130 26 1.96 2 332 592 260 2.50 0.26 6012.60 330.85 
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Simulation Model of Inventory System 
The simulation model was developed using the ARENA 
5.0 simulation modelling environment. The described 
conceptual model is converted into a computer model. 
Simulation is used to analyse and evaluate the increase 
in variability of placed orders in the described inventory 
system. 
 
Tactical Planning of Experiments 
The inventory system model is a non-terminating 
simulation. There is one key output statistics: quantity 
of the placed orders. It is known that the model starts 
from an unrealistic state of containing no inventory in 
the warehouse. Because the input data does not change 
throughout a simulation run, the output is expected to 
reach a steady state. Figure 2 shows a time-series of 
placed order quantities from 5 replications of 1000 
periods. However, it does not show a clear initialization 
bias. Using Welch’s method [Robinson, 2003], based on 
the calculation and plotting of moving averages, on the 
same data the moving average line become smooth after 
40th period (see Figure 3).  
 

 
Figure 2: Time-series of placed order quantities (mean 

of 5 replications) 
 

 
Figure 3: Plot of moving average (based on window 

size=5) 
 
It takes a long time for the warehouse inventory to grow 
to a realistic level if no condition is set. Therefore, it 
makes sense to set an initial condition for the inventory 
as an alternative to using a warm-up period. The warm-
up period is avoided by setting the initial inventory level 
equal to the lower control limit called the order point s 
at the beginning of each replication (see Figure 4).  
 

 
Figure 4: Plot of moving average (with defined initial 

inventory level) 
 
Besides, in theory the warm-up period should be 
determined separately for every experimental scenario 
run with the model. Changes to the experimental factors 
may lead to quite a different initial transient. The lower 
control limit called the order point s changes 
accordingly to new input data and warm-up period does 
not have to be determined for each experimental run 
since the appropriate initial condition is set. 
 
In order to ensure that enough output data have been 
obtained from the simulation to estimate the model 
performance with sufficient accuracy a single long run 
is to be performed instead of using multiple replications. 
Three replications are performed with the model. The 
cumulative means of the order quantities and a 
convergence are calculated. Figure 5 shows the 
cumulative mean data graphically. 
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Figure 5: Cumulative means of the order quantities 

 
The data appear to have settled at about 832 periods 
with the convergence remaining close to or below 2% 
and three lines remaining fairly flat. The distributions of 
order quantities for the three replications (shown in 
Figure 6) also seem reasonably similar. 



PETUHOVA; MERKURYEV: COMBINING ANALYTICAL AND SIMULATION APPROACHES … 

I.J. of SIMULATION Vol. 8 No 1          ISSN 1473-804x online, 1473-8031 print 
 

21

0

10

20

30

40

50

60

70

80

100 105.5 111 116.5 122 127.5 133 138.5 144 149.5 155 160.5 166 171.5 177

Result

Fr
eq

ue
nc

y

Rep. 1 Rep. 2 Rep. 3  
Figure 6: Histograms of order quantities for three 

replications 
 
To insure a statistical significance of the order quantities 
sample (observation number more than 100) a run-
length of 2000 periods is used for experimentation. 
 

Simulation Experiments 
The objective of experimental studies is to determine 
the bullwhip effect magnitude in the inventory system 
that implements the S-s inventory control policy and 
validate the results produced by the analytical model of 
the same inventory system. For that purpose, a set of 
experiments with the simulation model is performed. 
The performance of the inventory system is evaluated 
under various factors similar to the sample application 
of the analytical model for the quantification of the 
bullwhip effect (see Table 1). 

The model was run for 1 replication. Each 
replication length is defined as 2000 time periods. The 
warm-up period is avoided by setting the initial 
inventory level equal to the lower control limit called 
the order point s. 

The mean value and variance of placed orders 
during simulation are shown in Table 2. 
 

 
Table 2: Placed orders variability estimation by simulation model 

 

Nr. E(X) STD(X) z LT s S S-s )Q(Dsim  )Q(Esim  

1 50 10 1.96 2 128 228 100 311.77 125.78 
2 70 14 1.96 2 179 319 140 603.03 176.53 
3 90 18 1.96 2 230 410 180 996.55 226.75 
4 110 22 1.96 2 281 501 220 1501.83 277.63 
5 130 26 1.96 2 332 592 260 2082.93 328.10 

 
 
Simulation Results 
The results given by the analytical model proved to be 
in disagreement with those given by the simulation 
model. The variance of placed orders calculated by 
analytical model (see Table 1) is approximately 3 times 
greater in all experiments than actual variance of placed 
orders derived from the simulation model (see Table 2). 
The reason for the inadequate bullwhip effect 
quantification by the analytical model is an existing 
dependence between a period number when an order is 
placed v and realisations of the end demand Xi. In other 
words, the proposed formula (5) assumes v and X 
independence, but in the described inventory control 
system they are dependent in the way of conditional 
probability of v occurrence pv=P(X1+X2+…+Xv>S-
s/X1+X2+…+Xv-1<S-s). 
 
COMBINED ANALYTICAL/SIMULATION 
APPROACH 

The period number when an order is placed directly 
depends on the demand quantity (the larger the demand 
quantity during the order cycle is, the faster inventory 
level reaches the order point s and frequency of orders 
increases; i.e, v decreases). From this it follows that 

random variables v and Q= ∑
=

v

1i
iX  are correlated. 

Random variables Q and v that are denoted by the 

expected values and standard deviations M Q , σQ  and 

M v , σv  correspondingly, are dependent random 
variables. 

In order to establish a statistical dependence between 
the placed order quantity and a period number when it is 
placed, Q and v are represented as a system of the two 
dependent normally distributed variables that have the 
following joint probability density function: 
 

⎩
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where 
r – correlation coefficient between Q и v, -1≤ r ≤1. 
It should be noted that for jointly distributed normal 
random variables concepts of independence and 
uncorrelation are the same. That is, if random variables 
are independent, they are uncorrelated and vice versa. 
 
If the value of the random variable v is known, then the 
value of the random variable Q is conditional. In this 
case, it has a conditional probability density function: 
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The conditional random variable has a conditional 

expected value: 
 

[ ]MvrMdQ)v/Q(QW)v/Q(M v
v

Q
Q −∫ +==

∞
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and a conditional variance: 

[ ] )r1(dQ)v/Q(W)v/Q(MQ)v/Q( 22
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∞

∞−
σσ

 
Thus, the conditional variance of the random variables 
Q is independent of the v value. It is estimated by their 
own unconditional variance σ 2

Q  and the correlation 

coefficient r between Q and v.  
 
Analytical model implementation gives an 
unconditional variance of the placed orders σ2

Q , as it is 
calculated for unknown period number v when the order 
should be placed for each order cycle. 
 
Simulation model allows one to estimate a conditional 
variance of the placed orders )v/Q(σ2 . Based on the 
results obtained, it is possible to calculate the 
correlation coefficient r between Q and v, using this 
formula: 

 

D(Q)sim=D(Q)cal*(1-r2) ⇒ 
)Q(D
)Q(D

1r
cal

sim−= , 

where 
D(Q)sim= )v/Q(2σ  – variance of placed orders 
estimated by the simulation model with known v 
(conditional variance); 
D(Q)cal=σ 2

Q  – variance of placed orders estimated by 

the analytical model with unknown v (unconditional 
variance). 
 

Table 3: Coefficient of correlation between Q and v 
 

Nr. D(X) )Q(Dcal  )Q(Dsim  r 
1 100 886 312 0.8 
2 196 1743 603 0.8 
3 324 2882 997 0.8 
4 484 4305 1502 0.8 
5 676 6013 2083 0.8 

The calculated correlation coefficient between Q and v 
(see Table 3) in the inventory system that implements 
the S-s inventory control policy when end customer 
mean demand and its standard deviation change 
proportionally, i.e. they are dependent through the 
Signal To Noise factor, is the same for all 5 
experiments. It is supposed that the correlation 
coefficient depends only on the lead time length. A set 
of corresponding correlation coefficients for various 
lengths of the lead time could be estimated by the 
elaborated combined analytical/simulation approach. As 
soon as the dependence between the placed order 
quantity and a period number when it is placed is found, 
the described analytical model can be used for 
numerical evaluation of the bullwhip effect. 
 
In order to investigate an impact of various lead time 
lengths on the correlation coefficient a set of 
experimental studies is performed in the next section. 
 
APPLICATION OF COMBINED 
ANALYTICAL/SIMULATION APPROACH 

Considering the inventory system described in the 
Section 4 the only factor that impacts the correlation 
coefficient between the placed order quantity and the 
period number when it is placed is the lead time length 
(LT). Changes of the safety stock factor (z) play an 
important role in avoiding stock out occasions, but do 
not affect the variation of placed orders implementing S-
s inventory control policy when end customer mean 
demand and its standard deviation are dependent 
through the Signal To Noise factor. The end customer 
mean demand E(X) and its standard deviation STD(X) 
values have neither any impact on the dependence 
between the placed order quantity and a period number 
when it is placed since they change proportionally. 
 
A set of correlation coefficients for different Signal To 
Noise factors (9) are estimated by the elaborated 
combined analytical/simulation approach. Experiments, 
when the standard deviation of the mean demand 
changes in accordance with various Signal To Noise 
factors and remaining factors are considered to be 
constant numbers, are performed. The simulation model 
of the inventory system was run for 1 replication. Each 
replication length is defined as 2000 time periods. 
Figures 7 and 8 represent the corresponding correlation 
coefficients for various Signal To Noise factors and 
different mean demand values. The bigger is the Signal 
To Noise factor the smaller is a variability of the 
demand the smaller will be dependence between the 
placed order quantity and a period number when it is 
placed. 
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Figure 7: Coefficient of correlation for different Signal 
To Noise factors when end customer mean demand is 

equal to 100 
 

Mean Demand = 243
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Figure 8: Coefficient of correlation for different Signal 
To Noise factors when end customer mean demand is 

equal to 243 
 
By analysing the correlation coefficients values for the 
same Signal To Noise factor but for different end 
customer mean demand values we can conclude that 
they agree completely. Thus, we can assume that in case 
of known Signal To Noise factor and the lead time 
length (LT) correlation coefficient will be the same for 
any value of the end customer mean demand. Once 
found correlation coefficient could be used to evaluate a 
variability of the placed orders because it is independent 
from the mean demand value. 
 
In order to evaluate the bullwhip effect by the analytical 
formula (5) a set of correlation coefficients 
corresponding to established lead time length should be 
found by the elaborated combined analytical/simulation 
approach. Figure 9 represents a set of correlation 
coefficients for different lead time length in case when 
variability of the end customer demand depends on the 
mean demand value through the Signal To Noise factor 
equal to 5. 
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Figure 9: Coefficient of correlation for different lead 
time length 

 
By analysing results shown in Figure 9 we can conclude 
that the bigger is the lead time length the bigger will be 
dependence between the placed order quantity and a 
period number when it is placed. 
 
A set of corresponding correlations coefficients for 
different lead time length and Signal To Noise factors 
could be found by proposed combined 
analytical/simulation approach. Then analytical formula 
(5) could be used to evaluate the bullwhip effect in 
inventory systems that implement the S-s inventory 
control policy. 
 
CONCLUSIONS 

The analytical model for the quantification of demand 
fluctuation magnification (the bullwhip effect) as orders 
move up the supply chain in case of stochastic demand 
is elaborated. A combined analytical/simulation 
approach is used to estimate the dependence between 
the placed order quantity and a period number when it is 
placed with a view to make the analytical solution more 
accurate. 
 
The impact of different distributions of the demand and 
of different ordering policies on the above-mentioned 
dependence is a subject of future research. 
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