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Classical Reinforcement Learning with tabular value function form is unable to cope successfully with real world tasks which 
suppose continuous or large space of states and actions. Value Function Approximation and Policy Gradient allow solving the mentioned 
problem. In most papers the methods are described theoretically, but suffer from the lack of details of practical part. The aim of this article is 
to make an overview of mentioned methods and meet a lack. For this purpose some aspects of the implementing a couple of algorithms 
related to Value Function Approximation are shown: Tile Coding and Gradient Descent with Back-propagation Artificial Neural Network. 
The Mountain Car task is used to demonstrate results of experiments of Tile Coding. 
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1. Introduction 
 

Simple and effective idea for intelligence agents is advised by Reinforcement learning (RL) for automated 
exploration of unknown environment and goal achieve. As many other AI algorithms, RL should be exceedingly 
upgraded to cope with real world tasks. To work with continuous or large spaces of states two basic approaches 
were suggested: Value Function Approximation and Gradient Policy. Both algorithms are broadly investigated, 
but some practical details are not clear yet, for example, the influence of tiling size in Tile Coding. In one’s turn, 
the adaptation of Neural Networks to Reinforcement Learning is not trivial task due to requirements of the 
problem, its properties, selecting of activation function for each hidden layer and so on. The complexity is 
indorsed by the words of Richard Sutton (the expert and researcher in reinforcement learning): “It is a common 
error to use a back-propagation neural network as the function approximator in one's first experiments with 
reinforcement learning, which almost always leads to an unsatisfying failure. The primary reason for the failure 
is that back-propagation is fairly tricky to use effectively, doubly so in an online application like reinforcement 
learning” [1]. Nevertheless the method was successfully applied in a series of individual works.  

The paper provides a survey of value function approximation methods and describes a few technical 
details gained from self experience. 
 
2. Reinforcement Learning 
 

Reinforcement Learning is defined as the problem of an agent that learns to perform a task through trial 
and error interaction with an unknown environment which provides feedback in terms of numerical reward [2]. 
The agent and the environment interact continually (see Fig. 1) within discrete time.  

 

 
Fig. 1. The agent-environment interaction in reinforcement learning 

 
At time t the agent senses the environment to be in state st; based on its current sensory input st the agent 

selects an action at in the set A of the possible actions; then action at is performed in the environment. Depending 
on the state st, on the action at performed, and on the effects of at in the environment, the agent receives a scalar 
reward rt+1 and a new state st+1. The agent’s goal is to maximize the amount of reward it receives from the 
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environment in the long run. This is usually expressed as the discounted expected payoff (or expected return as 
in [3]) which at time t is defined as follows: 
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where γ is the discount factor (0≤γ≤1) that specifies the importance of future reward. The larger is γ, the more 
important and more distant future rewards. 

In common case reinforcement learning algorithms use tabular functions for estimating utility (value) of 
current properties. Two kinds of value functions are exist in classic RL: 

• functions of states – V(s) – estimates “how good” it is for the agent to be in a given state s; 
• functions of state-actions pairs – Q(a, s) – estimates “how good” it is to perform a given action a in a 

given state s. 
The notion of “how good” here is defined in terms of future rewards that can be expected in terms of 

expected return. Accordingly, value functions are defined with respect to particular policies [3]. Thus, for 
example, optimal value of a state is the expected infinite discounted sum of rewards which agent will gain if it 
starts in current state and implements optimal policy. 

In reinforcement learning the agent learns how to maximize the incoming reward be developing an 
action-value function Q(a,s) or a state value function V(s) that maps state-action pairs or states into the 
corresponding expected payoff value (Equation 1). 
 
2.1. Drawbacks of tabular RL  
 

By the present days, researchers faced to many problems peculiar to RL (not only tabular). Most essential 
are the following:  

• huge amount of trials – the main principle of RL require to execute certain action by agent to explore 
a reward for each allowable state; 

• exploration and exploitation dilemma – the problem rises if the exploitation of agent is not separated 
from its learning. In that case the amount of exploration is another parameter including to system; 

• picking up constants and parameters – usually each algorithm requires custom values of constants 
and parameters per each task or environment. Often it is done by expert’s manual setting up; 

• adopting “reality” into RL concept – obviously the problem is nature for all AI algorithms, 
At last, the tabular-RL specific drawback is the “curse of dimensionality”. Exactly to that problem is 

devoted the approximation. Classic way of value functions (state-value function or action-value function) 
representation in reinforcement learning is tabular form. Hence, value storing and updating is simple, intuitive 
and fast, in other hand, the way is only capable to cope with small number of states and actions. Simple toy 
tasks, like walking in grid worlds, Windy Gridworld (mentioned in [3]), Pick-and-Place Robots etc, are 
successfully used by researches for demonstrating principals of RL functioning. Real-world tasks, often 
requiring taking in account complicated physics in real time, should be neither oversimplified nor solved by 
other methods.  

More over, it is unable to work in tasks with continuous spaces of states or actions. Due to possibly large 
state-action spaces, it has become clear that tabular-based reinforcement learning scales-up poorly.  

For example, Q-learning’s Q-table (which is |S|×|A|) grows exponentially in the problem dimensions [2]. 
The “curse of dimensionality” implies growing of experiences required to converge to an enough estimate of the 
optimal V- or Q-table, and requires more memory to store the table. 

 
2.2.2 Existing solutions 
 

Two fundamental ways to cope with large space of states are known today wide: value function 
approximation and policy gradient methods. In Figure 2 the methods are shown in hierarchical structure. 

First of all it is important to point out, that we can’t cope with the “curse of dimensionality” simply by 
using local linear features. Simply because of the number of features which grows exponentially with the number 
of dimensions of the model state space [4]. 

In the function approximation technique the action-value function Q(a,s) is seen as a function that maps 
state-action pairs into real numbers (i.e., the expected payoff); gradient descent techniques are used to build a 
good approximation of function Q(a,s) from on-line experience [2]. In other words, function approximation takes 
examples from a desired function (in our case a value or action functions) and attempts to generalize from them 
to construct an approximation of the entire function [3]. So, function approximation allows represent value 
functions for large state spaces. We can interpret it as compressing. But the main benefit is that thanks to 
function approximation agent might generalize self experience from “visited” states to unknown. In [5] the 
authors point out some of the drawbacks of value function estimation (not including residual gradient algorithm). 
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Most implementations lead to deterministic policies even when the optimal policy is stochastic, meaning that 
probabilistic action policies are ignored even when they would produce superior performance [6]. Further, 
because these methods make distinctions between policy actions based on arbitrarily small value differences, 
tiny changes in the estimated value function can have disproportionately large effects on the policy. 

 

 
 

Fig. 2. Algorithms and methods to cope with continuous or large spaces of states 
 

 
In turn a policy-gradient approach is able to bypass drawbacks of directly mentioned above. In this 

approach, instead of learning an approximation of the underlying value function and basing the policy on the 
expected reward indicated by that function, policy-gradient learning algorithms maximize the long-term 
expected reward by searching the policy space directly. In addition, being able to express stochastic optimal 
policies and being robust to small changes in the approximation, under certain conditions policy gradient 
algorithms are guaranteed to converge to an optimal solution [7], [8].  

Interesting is that value function approximation despite some theoretical drawbacks (mentioned above), 
demonstrates in practice greatly better results than policy gradient. Exhaustive experiment named “Policy 
Gradient vs. Value Function Approximation: A Reinforcement Learning Shootout” executed by [6] demonstrates 
that Sarsa(λ) armed with function approximation is able perform better than OLGARB1 in continuous, stochastic, 
partially-observable, competitive multi-agent environment. 

The residual gradient algorithms (proposed in [9]) are a new class of algorithms, which perform gradient 
descent on the mean squared Bellman residual, guaranteeing convergence. It is shown, however, that they may 
learn very slowly in some cases. 

Let’s consider a special case of gradient-descent function approximation when approximate function Vt(s) 
(which is value of state s) is a linear function of the parameter vector tθ

G
. The general gradient-descent method 

for state value prediction is as follows: 
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where α is a positive step-size parameter, and tv is target output of the t-th training example. For details see [3]. 
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1 OLGARB is initials from “On-Line GPOMDP with an Average Reward Baseline”, in one’s turn GPOMDP is initials from 
“Gradient of a Partially Observable Markov Decision Process”. 
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Due to linear case the gradient of the approximate value function with respect to tθ
G

 simply is  

stt sV
t

φθ

G
G =∇ )( . (4) 

Finally, our goal is to find the parameter vector θ
G

. In one’s turn to convert state into features 
representation the Tile Coding is used. Notice that for control tasks the action-value ),( ttt asQ  is used instead 

of )( tt sV . 
 

3. Tile Coding Implementation 
 

Tile Coding is an algorithm of generalization value function having linear representation by a set of 
parameters. In our case the software implements on-policy Sarsa(λ) control method using linear, gradient-
descent function approximation with binary features via Tile Coding. Some parts of the software are based on [3] 
works. 

Let’s see several details how to implement value function approximation by Tile Coding algorithm. We 
will use Mountain Car as the experimental task due to some difficulty: gravity is stronger than the car's engine 
and even at full throttle the car cannot accelerate up the steep slope when starting (at zero velocity) at the bottom. 
The only solution is at first to move away from the goal and up the opposite slope on the left. This is a simple 
example of a continuous control task where things have to get worse in a sense (farther from the goal) before 
they can get better. The actions available to the car are full throttle forward (+1), full throttle reverse (-1) and 
zero throttle (0). The car moves according to a simplified physics.  

 
 

 
 
 

Fig. 3. The Mountain Car task 
 
 
Its position xt and velocity vt are updated by: 
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where the bound operation enforces -1.2 <= xt+1 <= 0.5 and -0.07 <= vt+1 <= 0.07. When xt+1 reaches the left 
bound it has crashed into the wall and its velocity vt+1 is reset to 0. When xt+1 reach the right boundary it has 
reached the goal and the episode is terminated. 

The central idea of Tile Coding is that the all continuous space of search (bounded by task’s parameters) 
is divided on pieces called tiles. In other words, each tile represents corresponding feature )(isφ . Each tile have 
own weight. There might be (and should to be!) different ways of partitioning, thus each partition calls tiling. 
Due to it, the tiling is overlapped (see Figure 4, for example). For a given point in a search space the 
approximate value is sum of the weights of the tiles (one per tiling, in which it is contained). A number of equal 
tiling overlapped with offset (shift) usually is enough to avoid generating of different tiling. It well simplifies the 
implementation. The square on the search space (for 2-dimension case) bounded by each tiling calls resolution. 
The resolution is one of the generalization’s significant properties.  

It is important to point out, that high resolution is not a guarantee of best result. The explanation is given 
below in the text. Nevertheless the Tile Coding successfully deals with continuous variables (a proof sketch is in 
[10]). 
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Fig. 4. Example of overlapped tiling for 2-dimensional space 
 

Using built software additionally to research of [3] let’s investigate dependence of convergence on tiling 
partitioning. The experiment supposes practically find the optimal tiling partitioning for obtaining the policy 
which fast (with minimal number of agent’s actions) leads the agent to the goal point. Figure 5 represents last 19 
observations (total 100) of 14 different partitioning (tiling). 

 

 
Fig. 5. Influence of discrimination on time of convergence 

 
Thus, according to Figure 5, the speed of convergence is not in linear dependence on size of tiling 

discretization. Most optimal values are 10x10, 11x11 and 12x12. In the same time 8x8, 9x9,13x13, 14x14 unable 
to give best convergence. Such peculiarity occurs due to result accuracy of approximation to desired function.  

 

 
 
 

Fig. 6. Example of features width’s 
 

The width of feature (tile) should be selected taking in account the nature of the desired function. If it is 
impossible, then the work [10] purposed to automated parameter choosing will be helpful. 
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4. Gradient Descent with Back-propagation Neural Network 
 

Main motivations to choose the artificial neural networks in task of approximation value function are 
ability to work with non-linear functions and simple adaptation of features.  

Back-propagation property of neural network is used to compute the gradient of the squared TD(λ) error 
with respect to the network weights. According to [3] the backward view of the action-value method the 
following expressions take a place. The equation (in terms of RL) of multi-layered perceptron becomes the 
following: 
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where g is activation function of perceptron, k
ta – an action k. 

The update of gradient presented in terms of eligibility traces is the following:  
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where tδ  is the TD-error and computing as: 
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where α – learning rate, γ – discount rate. Initial value 00 =e . 

The weights of neural networks represent the vector θ
G

(parameter vector). By adjusting the weights, any 
of a wide range of different functions Qt (or Vt) can be implemented by the network [3]. The input of the 
network is the state st. Usually the input layer size is equal to state variables count. It works only for discrete 
state representation. Thus, for 2-dimension task with M N states the network should be equipped with M+N 
input neurons. In task with continuous state spaces this way of representation does not satisfy. Using of a 
gaussian distribution over the input nodes is alternative representation of continuous input state [11]. 

The output of network is a value of action-value function Qt. Often output layer size is equal to number of 
available actions if output neurons are coded in binary mode. Thus, each output neuron is interpreting as a flag to 
implement or not corresponding action for a current state. Some labours advice to use the same number of 
networks as many the actions are possible [12] (action per network). The structure of neural network for 1 output 
value might be implemented as it presented in Figure 7. 

 
 

 
 

Fig. 7. The multi-layered perceptron 
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As usually, size of hidden layer is free for experiments and searching an optimal value between speed of 
convergence, occupied memory and quality of output value. The preferred activation function is sigmoid 
function: 

ae
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which is the most used activation function for back-propagation networks partly due to its simple derivative. The 
activation function g(a) is normally a monotonic and non-linear function. Algorithm of combining RL with 
function approximation is described in [3]. 
 
5. Conclusions 

 
In this paper, we have discussed the problem of value function and action-value function approximation 

in Reinforcement Learning. The problems of tabular form of value function are described. To deal with them, 
two base methods are expounded: Tile Coding and Gradient Descent with Back-propagation Artificial Neural 
Network. Both methods successfully deals with continuous state space, nevertheless Tile Coding suffer of “curse 
of dimensionality”. In one’s turn binary coding of input layer neurons of neural network might be replaced by 
gaussian distribution over the input nodes to deal with continuous space.  

In Tile Coding, the accuracy of approximating might be increased by tuning up of tiles size. Too large or 
too small partitioning of state space causes slack approximation (see Figure 5).  

Value approximation gives opportunity to RL to be implemented in real-world tasks. In a certain sense a 
serious work should be done before a turn of agent’s policy exploitation starts. State and action description 
should be transformed to corresponding method’s input structure. For finding the optimal working parameters a 
mass of experiments should be done.  
 
References 
 
1. Sutton, R. Frequently Asked Questions about Reinforcement Learning – 

http://www.cs.ualberta.ca/~sutton/RL-FAQ.html. Initiated 2001.08.13. Last updated 2004.04.02. Visited 
2008.04.03. 

2. Butz, M.V., Goldberg, D.E., Lanzi, P.L. Gradient Descent Methods in Learning Classifier Systems: 
Improving CXS Performance in Multi-step Problems, Evolutionary Computation, IEEE Transactions, Vol. 
9, Issue 5, Oct. 2005, pp: 452-473. 

3. Sutton, R.S., Barto, A.G. Reinforcement Learning. An Introduction. Cambridge, MA: MIT Press, 1998. 
342p. 

4. Baxter, J., Bartlett, P.L. Direct Gradient-Based Reinforcement Learning: I. Gradient Estimation Algorithms. 
Research School of Information Sciences and Engineering, Australian National University, July 29, 1999. 
24 p. 

5. Sutton, R.S., McAllester, D., Singh, S., Mansour, Y. Policy Gradient Methods for Reinforcement Learning 
with Function Approximation. In: Advances in Neural Information Processing Systems 12, Cambridge, MA: 
MIT Press, 2000. pp. 1057-1063. 

6. Beitelspacher, J., Fager, J., Henriques, G. and Amy McGovern. Policy Gradient vs. Value Function 
Approximation: A Reinforcement Learning Shootout: Technical Report No. CS-TR-06-001. School of 
Computer Science University of Oklahoma Norman, OK 73019, Feb. 2006. 

7. Fager, J. Online Policy-Gradient Reinforcement Learning using OLGARB for Space-War. University of 
Oklahoma, 660 Parrington Oval, Norman, OK 73019 USA, 2006. 

8. Baxter, J., Bartlett, P. L. Infinite-horizon policy-gradient estimation, Journal of Artificial Intelligence 
Research, Vol. 15, Nov. 2001, pp. 319-350. 

9. Baird, L. Residual Algorithms: Reinforcement Learning with Function Approximation. Department of 
Computer Science, U.S. Air Force Academy, CO 80840-6234. 1995. 

10. Sherstov, A.A., Stone, P. Function Approximation via Tile Coding: Automating Parameter Choice. In: 
Symposium on Abstraction, Reformulation, and Approximation (SARA-05). Edinburgh, Scotland, UK, 2005, 
p. 12. 

11. Bishop, Ch.M. Neural Networks for Pattern Recognition. USA: Oxford University Press, 1995, p. 504. 
12. Jakša, R., Sinčák, P., Majerník, P. Back-propagation in Supervised and Reinforcement Learning for Mobile 

Robot Control. In: Computational Intelligence for Modelling, Control & Automation (CIMCA'99). Vienna, 
Austria, 1999, p. 6. 

 


