COMPUTER SCIENCE
DATORZINATNE

ISSN 1407-7493 2009-7493

APPLIED COMPUTER SYSTEMS
LIETISKAS DATORSISTEMAS

SEVERAL OUTLINES ON MODEL-DRIVEN APPROACH FOR TESTING OF EMBEDDED
SYSTEMS

DAZI MODELVADAMAS PIEEJAS PAMATPRINCIPI IEGULTO SISTEMU TESTESANAI

Jurijs Grigorjevs, Mg. sc. ing., PhD student, Riga Technical University, Meza 1/3, Riga-LV1048, Latvia,
Integration testing team leader, TietoEnator SIA, Lacplesa 41, Riga-LV1011, Latvia,
jurijs.grigorjevs@gmail.com

Oksana Nikiforova, asoc. professor, Dr.sc.ing., Riga Technical University, Meza 1/3, Riga, LV 1048, Latvia,
oksana.nikiforova@rtu.lv

Model-driven testing, embedded systems
1. Introduction

Embedded systems are specific because of multiple interfaces with external environment. The
cooperation with external environment requires special hardware and software as well as approaches
of software development to provide quality of an embedded system. Therefore embedded systems are
characterized by the set of special features, which require special internal structure, internal processing
principles and mechanisms. In OMG Model Driven Architecture (MDA) [1] models are the primary
artefacts of the software developments process. According to the main statement of MDA system
development is based on keeping the appropriate level of abstraction — that is, separate the overall
system design from its implementation on the specific technology platform. Central to MDA is the
notion of creating different models at different levels of abstraction and then linking them together to
form an implementation [2]. Some of these models exist independent of software platforms, while
others are specific to particular platforms. Each model is expressed using a combination of text and
multiple complementary and interrelated diagrams. Existent researches in the context of MDA are
mostly focused on system development from functional, structural and physical aspects point of view
[3], [4]. In [3] authors deal with structure and functional behavior of embedded systems in context of
applying MDA principles and provide the approach of model transformation for such models.
Business requirement traceability through different MDA models is discussed in [4]. In [5] in the
context of MDA authors describe model-based testing without testing model derivation from MDA
models. In our research we focus on testing model derivation from system MDA models.

The one of the main ideas of this paper is to show general model-driven testing principles and their
realization in the context of MDA. The second object of research in this paper is an effort to apply
main principles of model-driven development and foundations of model transformations to the testing
of several features of embedded systems, which requires a specific approach for verification and
validation during such a system development.

To create projection of theory to practical context, in this paper we have chosen one embedded
systems feature — timing. For timing specification on system level, we took OMG suggested UML
profile for Schedulability, Performance and Time. For test case specification we have used also OMG
provided UML standardized Testing profile. Using these modeling approaches, we presented
simplified models that support mentioned timing feature specification.

2. Principles of model-driven approach in the context of system testing

Generally model-driven testing defines test case development strategy using the model of the system
under test [6]. This means that using abstract functional model of the software, which represents also

108

functional as well as non-functional requirements of the system, sets of test data, preconditions and
test exit criteria are created. There are two different ways to implement test cases: manual and
automated. In manual test case generation there should be at least one testing engineer, who analyzes
given abstract functional model of the system and creates test cases. Test cases could be written in
native language as well as using some formal definition. Such test case generation technique is widely
used and can be combined with a non-model-driven testing, for example based on requirements
document.

Automated test case generation becomes more and more popular. There are 2 major reasons for that.
The first reason is to cut time-to-market and to deliver products faster with higher quality [7]. The
popular idea to start testing earlier is going to be realized in model-driven testing. Analysis phase
produces models of the system, describing its functional and technical aspects and including
previously prepared requirements (sometimes requirements could be detailed also in analysis phase
together with construction of models). This means immediate starting of the testing process without
waiting of programming activities. The second major reason to use model-driven testing is compliance
to principles of MDA, where models (with some specific formal OCL restrictions) are the only
possible system specification documents. In this case model transformation and generalization is
compliant to classical testing V-model [6], where the main idea of the model is not to show
appropriate related activities, but to represent program abstraction level (for example, to show that
system testing deals with the whole fully integrated system and user acceptance testing verifies and
validates end-user requirements). Figure 1 presents the accordance between model transformations
under MDA and V-model of testing.

CIM - Requirements [-\ N~ """ """ """ T oo oo ~~| Acceptance
analysis A testing
e = Q. —
[| PIM initial System System
| | design g testing
|
| 1 | "\\‘ /
| PIM refined | | Technical == g\~ 7 - 1 Integration
| design testing
T J‘ - .\\ - /
Module [T 77777))
PSM design Q Unit testing
Code p .
rogramming

Fig.1. MDA model transformation and testing V-model

MDA principles specify models on different abstraction levels. The model with highest abstraction
level is CIM (Computation independent model), which represents requirements for the system to be
build. Such model sometimes is call a domain or a business model. In MDA specification CIM
requirements should be traceable to the PIM and PSM constructs that implement them and vice versa
[2]. On Figure 1. in testing V-model requirements analysis phase is the appropriate system abstraction
to CIM model. The result of requirements analysis is the business and functional aspects of developed
system. From the testing point of view such abstraction level is covered in acceptance testing, where
the required system functionality is validated. The next abstraction model is Platform independent
model (PIM). The model describes the system and its structure, but does not show details of its use.
PIM does not show any platform specific features and is used to specify general systems functional
principles. On testing V-model this abstraction level is presented by system design and system testing
activities, where similar aspects of the system are described. The Platform specific model (PSM) is
produced by the transformation from PIM model. If PSM model contains all necessary information
needed for system implementation, then the model could be used for program code generation. In
classical program development this correspond to concrete module design, programming and unit
testing.

109

2.1. Modeling artefacts in context of testing

Models are the primary artefacts during model-driven development. Model consists of sets of elements
that describe some physical, abstract, or hypothetical reality. UML is the central component of MDA
and is used for presentation of system model at different levels of abstraction. It can be appended with
formal notations written in OCL. A metamodel is a model of a modeling language. It defines the
structure, semantics, and constraints for a family of models. A model is captured by a particular
metamodel. For example, a model that employs UML diagrams is captured by the UML metamodel,
which describes how UML models can be structured, the elements they can contain, and the properties
those elements exhibit. In turn, a metamodel may describe some properties of a particular platform,
not only the UML, while a platform's properties may be described by more than one metamodel.

By the nature, test case also can be represented as a model, because it also consists of a set of elements
that describe abstract reality, which is set of preconditions and data inputs for some program
functionality as well as set of expected results for described abstraction. In model transformation test
case generation means some set of transformation rules necessary to get test case destination model
from systems model, presented in the form appropriate for test case generation.

A projection of MDA definitions of model, metamodel and model transformations into process of
system testing gives us the possibility to define test case generation process in terms of model
transformations under main statements of model-driven approach. Before model specification,
appropriate metamodel should be defined. Metamodels specify all possible elements and relations in
between of target models. Metamodels are based on Meta Object Facilities (MOF). Intermodels
dependencies for test case generation presented in the terms of model driven approach are shown on
Figure 2.

Instance of
MOF B
Source Test case
Metamodel Metamodel
i i
Source model iz
model

Fig.2. Application of MDA principles for test case presentation

Figure 2 presents dependencies between source and Test case models of the current research. The
source model is based on the timing concepts defined in UML profile for Schedulability, Performance
and Time and Test case model is based on the concepts taken from UML Testing profile. The Testing
profile provides also standalone metamodel describing all necessary artefacts mentioned in the profile.
The first profile, sometimes called also Real-time profile, does not contain standalone metamodel for
model definition, but includes additions to standard UML metamodel.

MDA principles are based on the model transformation, where new models are created from existent
models applying special transformation. Transformation between models is made by transformation
definition, which is a collection of transformation rules in the form of an unambiguous specifications
of the way that (a part of) one model can be used to create (a part of) another model [8].
Transformation rules are presented with predefined transformation definition language. Automated
transformation of models can be provided only by special tool, which is able to understand a notation
of a source and target models and to apply transformation rules according to their logic to given source
model. The result of such process is a set of destination models. Basic MDA framework described in
[8] defines a general scheme for transformations between models. It is applied to a test case generation
and the result is shown on Figure 3. Same principles are applied in test case model generation, where
several test case models are created from one or more system models. The Figure 3 shows model
transformation principles, for transformation needed artefacts and relations between them. In this

110

article we do not discuss transformation in more detailed view and above mentioned diagram is
presented here to show test case generation principles in the context of MDA.

is g,
n
s an of MOF il]s ______
-------- > ctance lan - ~~<
-~ inst Ce of L=
o < and thei S Elements and their
Iertr'len f\ an p eir relationships for
relationships for S . language to specify

modeling notation to
present model of
system feature

test case defined for

Metamodel Metamodel verification of
required system

required for testing is is feature
defined defined
by by
Modeling notation to _) 0 Language to specify
_ transformation test case defined for
present model of p2=~(definiti ~ e
system feature _— efinition Y verification of

required system

required for testin
N 9 feature

language

is is

written written
in in
Test case defined
Model of system __ | for verification of
feature required / required system
for testing S~ feature
model model

Fig.3. Application of basic MDA framework [8] for test case generation

In the case of test case generation we need a notation for modeling of features of a system and a
notation for description of such a test case.

2.2.UML Testing profile

For testing purpose OMG has created and standardized UML Testing profile, which is used for test
case model development. Profile provides standardized approach for test cases and test suites
development in model-driven development. It represents MOF-based standalone metamodel for
testing aspects modeling. Figure 4 presents MOF-based metamodel of testing profile [9].

od MOF-based Metamodel /

TestLog Deployment DataPool
- name: String. - name: String - name: String TestComponent
- verdict: Verdict - deploymentDefinition: String - dataPoolDefinition: String :
- testLogDefinition: String - name: String

testComponentDefinition: String
TestContext /]\
- name: String Arbiter
estCase @ - I
testContextDefinition: int - name: String

- name: String - arbiterDefinition: String
- testCaseDefinition: String

Scheduler

- name: String
v - schedulerDefinition: String

- name: String
- SUTdefinition: String

Behavior
«ent\J/n;sjr::ttmn» - name: String
TestObjective - behaviorDefinition: String
- pass:
- name: String - fail:
- testObjectiveDefinition: String| |- inconclusive:
error:

Fig.4. Testing profile metamodel
111

This profile suggests completely different and new approach for testing management, which consists
of test case, test data, program’s behavior and test results. Using Testing profile test cases and to them
related data could be stored and represented using in profile defined elements of metamodel.

The profile describes major classes of testing related aspects and represents general approach of test
case management. As it shown on Figure 4, standardized Testing profile represents general view on
testing aspects and specifies high abstraction level of test case management structure. Profile does not
specify any system related aspects and leaves this for concrete systems developers. Such approach
provides profile to be widely used for different types of systems including embedded systems too.
Standard UML 2.0 version is supposed to be used in general system specification. For specific systems
such as embedded systems, there exists special UML profile called UML Profile for Schedulability,
Performance and Time [10]. This profile provides additional modeling elements for embedded
systems specification.

3. Embedded systems

Embedded systems are systems where hardware and software are the part of complex system and are
scheduled for functioning of specific usage without interference of humans. The term embedded
system as a research object examined in this article means software for management of such systems.
To start the analysis and research of the specific of testing process of embedded systems, it is
necessary to analyze the specific character of embedded systems and to define properties and
restrictions of such systems. Figure 5 describes structure and features of embedded systems [11].

Transform
data to signa

External
environment

Embedded system

Sensor 1 X
devices layer

ransform data
to signal

Embedded
software layer

|
| | ,
/Processing of\ Asynchronism Embedded sc?ftware s
‘ signals } core processing layer
| | =
| Interfaces | Time Features/ | gcheduling
| ! constraints| Internal processing
! anaging of\!
! devices /! Reliability| (Synchronization
! |

,,,,,,,,,,,,,

Device 1

Device n

Fig.5. Structure of embedded systems

Embedded systems should interact with external environment to get its parameters and measures, e.g.
parking sensors in parking alert systems in cars, thermometers in refrigerators, weight sensors in
elevators and others. Such devices are represented in the layer of embedded system devices in Figure
5. After receiving external signals, devices transmit data to appropriate interface for further converting
and processing in the computer (is represented as the layer of embedded software). Core processing
layer of embedded system (highlighted as grey) represents software, which is focused on support of
logical functionality of whole system. To establish valuable functionality of embedded systems, core
processing layer should support in Figure 5 mentioned features. These five specific features of
embedded systems are selected for detailed examination in this research in the context of testing of
embedded systems [11][12][13].

112

3.1. Specifics of Embedded systems

To fulfill managing of devices without human interaction and other specific activities embedded
software should support next non-functional requirements [12][13]:

» Asynchronism is a property of the systems, where events and actions can occur independently in
time and order. While embedded systems require full time tolerance. Both facts require specific
processing and control of asynchronous events and actions to meet strict time constraints and
fulfill appropriate processing.

» Synchronization is mandatory non-functional requirement in asynchronous systems with
multiple devices. There are 2 types of synchronization: data synchronization and
synchronization of processes. Process synchronization refers to the coordination of
simultaneous threads or processes to complete a task in order to get correct runtime order and
avoid unexpected race conditions. Data synchronization is the process of keeping multiple
copies of the set of data coherent with one another.

* Scheduling is a process of setting an order and time for planned tasks. In systems with multiple
processes there are competitive processes therefore it is necessary simultaneously handle several
tasks according to developed strategy. The order of planning the running of tasks ensures two
possibilities: management of resource consumption and foreseeing of worse cases when defined
planning algorithm is used. There are one processor scheduling and multiprocessing (using
more then one CPU).

* Time constraints are the modeling elements to define time limits for some activity or activity
set. The concept of real-time system supposes that preciseness in time is more important than
preciseness of software function. Time restrictions set usefulness of program activities
dependence on time. In addition to deadline there are another time restrictions, for example,
according to run time of some activity a special function determinates usefulness of it.

* Reliability is an ability of a system or component to perform its required functions under stated
conditions for a specified period of time. Embedded software needs to be fault tolerant and
during the compilation it is necessary to intercept defined types of software or hardware failures
(for example some optional device is broken and it is necessary to continue to perform main
operations or in case of incorrect data received, system should handle this inconsistence and
continue adequate processing).

Above mentioned requirements are typical for the most of embedded systems and often could be
required in other processing systems. Therefore could be also used in modeling and verification of
different non-embedded systems with similar features. Mentioned specifics of embedded systems
require special representation of metamodel level. Timing conditions as the example of embedded
system features are selected for detailed discussion in next chapters.

3.2. Timing conditions in models

Embedded systems in general are real-time systems and inherit all timing aspects. Almost every
popular modeling notation has it own on time focused adjusted notations. For example, Petri net has
Timed Petri net and PRES+ models, there are Timed Data flow diagram, Timed State transition
diagram and others [14].

For real-time systems OMG has created special profile called UML profile for Schedulability,
Performance and Time. Although profile does not contain standalone metamodel for concepts
specification, it defines set of additions for UML standard metamodel necessary for in profile defined
concepts specification. Profile is separated into several domains: Time, Concurrency, Schedulability
and Performance domains. Each domain defines set of concepts focused on embedded system feature
definition. Figure 6 presents all timing concepts defined within Time domain and relations in-between.

113

cd Timing profile /

PhysicalTime Physicallnstant Duration
>——
A
E
Clock TimeValue Timelnterval
kind: int 3
ClockInterrupt
\\
TimedEvent TimedAction

TimedStimulus

; f

TimingMechanism Delay

drift: int
Timer - stability: int

—>]- skew: int

Timeout

isPeriodic: boolean

+ set(TimeValue) : void
+ get() : TimeValue
+ reset() : void
< TimeSenrvice — start() : void
o+

pause() : void

+ newTimer(TimeValue) : Timer
+ newClock() : Clock

Fig.6. Time domain in UML profile for Schedulability, Performance and Time

All defined concepts of Time domain are grouped into 4 packages: TimedEvents, TimeModel,
TimingServices and TimingMachanisms. Each package covers their specific needs in timing constraint
specification.

OMG assumes that time progresses monotonically and only in forward direction. For this purpose they
define such classes as: PhysicalTime, Physicallnstant, Duration, TimeValue, Timelnterval, Clock,
Timer, ClockInterrupt, TimedEvent, TimeOut and so on. For detailed computers timing mechanism
specification profile includes specification of clock interrupts, timers, time events and others timing
related artefacts. All of this provides possibility to model timing aspects during systems specification
and further processing in model transformation and test case generation.

4. Practical outline of model construction

As the examples of model construction we discuss 2 program interactions with timing restrictions. For
this example 2 simple models, representing system behavior and structure of test cases, are shown
below. Taking into account model-driven testing approaches and MDA principles, the first step is to
define modeling notation (modeling language) for models representation. For timing concepts
specification in system model we use UML2.0 notation with profile for Schedulability, Performance
and Time. This provides all necessary modeling elements for timing specification. In the same time for

114

test case specification Testing profile is applied. Given model examples are built for the purpose to
show simple timing concepts realization in system model and interpretation in test case model.
Automated model transformation is not discussed here and is out of scope of this paper. Figure 7
presents such Sender-Receiver example model appended with RT timing notations.

cd Sender-Receiver Model/

Receiver Sender

:Receiver :Sender <<RTaction>>

E T {RTStart=(0,'mS'),

| RTend=(300,'ms"),

"I RTduration=(300, 'ms')}

1
]

connect '
< '
- 2

{2, ms}
accept

waitForMsg ~1d

“~.._ | <<RTstimulus>>
! {{RTstart=(0,'ms"),
RTend=(3,'ms")}

{4, ms}

sendMsg

A

<<RTdelay>>

{RTduration=(3, 's") <<RTaction>>

{RTduration=(3, 's')}

sendRepMsg

A

<<RTaction>>
{RTduration=(3, 's')}

sendResp {3.004, s}

disconn

closeConn

X i

Fig.7. Sender-Receiver model with timing notations

Standardized UML profile approach provides unified time aspects specification in system modeling.
Using stereotypes RTstimulus, RTaction and RTdelay (other possible stereotypes weren’t used in this
example) and to them related tags and tag values, we have specified actions and events processing
time and time restrictions.

To provide testing of timing aspects of system behavior, it is needed to specify them on test case level.
UML Testing profile is quite general and does not provide structures for collection of timing aspects.
Using metamodel defined in mentioned profile, we have created class diagram for testing artefacts
presentation to support timing aspects. This model is simplified example to show the principles of test
model development in the context of necessary task or program. Figure 8 shows test case model for
previously presented Sender-Receiver model.

The main classes of the model are taken from Testing profile and appended with necessary elements.
Such approach provides common standardized testing model development for different technology
systems. Additional classes ParamsType and Params are necessary to make the model more unified
and to provide program parameterization using different types of input data. For timing specification
main artefacts are classes RunPlan, RunScheduler and Programm. Class RunPlan provides logical
structure of timing restrictions described in RunScheduler for appropriate Programm. Class Checker
is necessary to validate actual functional result as well as timing aspects according to planned result
and to decide about the test case successful or unsuccessful processing.

115

cd TC model /

Verdict AL ParamsType
«enumerationy Checker - Type_ID: int
Verdicts - Type_descr: char
DataPool
TestLog
1 Datasets
ogs
9 - DS_ID: int Params
i E:_I:DD ilnntt - TC_D:int Param_ID: int
-t - Program_ID: int Param_name: char
- TS_ID: int - Param_ID: int i
; . Lo . Param_type: int
- Result: Verdicts - Param_value: int Program_ID: int

Date: char \
\ TestComponent

TestCase TestContext
Programm
TestCases TestSuite :
- Program_ID: int
- TC_ID: int — - TS_ID: int Program_name: char
- TS_ID: int - Program_ID: int Program_CMD: char
- TC_descr: char 0
- TC_result: Verdicts
Scheduler
RunScheduler
- RT_ID: int
- - start_time: char
ERlEe - end_time: char
RunPlan - min:time: char
- RP_D: int - max_time: char
- TC_ID: int
- Program_ID: int
- RT_ID: int

Fig.8. Test case model

This model is able to capture simple timing restrictions associated to some program processing. For
more detailed timing aspects definition this model should be appended with necessary elements, but
the core structure of testing model stay unchanged.

5. Conclusion

Model-driven testing is an integral part of MDA, although it is also widely used in other software
development methodologies. The main idea of the approach is to use formally described model-based
specification as for test case generation. In general model-driven testing test case are derived using
manual methods of test cases implementation. MDA makes this more efficient and supposes test case
automated generation by applying set transformation rules. For such transformation test case model
includes all necessary testing artefacts, which are mainly defined within UML Testing profile. This
profile provides standardized structure of testing elements and is common enough to be used for
different technology systems as well as for embedded systems.

Embedded systems are specific because of multiple interfaces with external environment. The
cooperation with external environment requires special hardware and software as well as approaches
of software development to provide quality of an embedded system. Therefore embedded systems are
characterized by the set of special features, which require special internal structure, internal processing
principles and mechanisms. To cover such specific processing OMG has created special UML profile
for Schedulability, Performance and Time, which is focused especially on real-time systems.

To provide practical system and testing model construction we have chosen one embedded systems
feature and created appropriate systems and testing models for timing representation. For systems
modeling we used Time domain defined in mentioned UML profile for Schedulability, Performance

116

and Time, which includes all necessary timing artefacts for this feature representation. Using UML
Testing profile metamodel we created class diagram for testing management that is focused especially
on timing aspects for system behavior and provides timing restriction representation on test case level.
Such approach is the first mandatory step for model-driven testing in the context of MDA. In next
steps these models are going to be used in model transformation to provide automated test case
derivation from system model.

The research reflected in the paper is supported by Grant of Latvian Council of Science No. 09.1245
"Methods, models and tools for developing and governance of agile information systems".

References

1. OMG Model Driven Architecture [Electronic resource] / OMG, 2008. - http:/www.omg.org/mda/ -
accessed 12.10.2008.

2. MDA Distilled: Principles of Model-Driven Architecture / Mellor S.J., Scott K., Uhl A., Weise D.
— Addison Wesley Professional, 2004. — P.176.

3. Metamodels and MDA Transformations for Embedded Systems [Electronic resource] / Research
Laboratory of the University of Sciences and Technologies of Lille, 2004. -
http://www2_lifl.fr/west/publi/BoDuDe04.pdf— last accessed 22.03.2009

4. Towards a traceability model in a MARTE-based methodology for real-time embedded systems
[Electronic resource] / SpringerLink 2008. www.springerlink.com/content/5053442378721908,
accessed 22.03.2009

5. Model Driven Testing of Real-Time Embedded Systems [Electronic resource] / Fraunhofer, 2006. -
fokus.fraunhofer.de/de/motion/ueber_motion/unser_team/zander-
nowicka justyna/ModelDrivenTestingOfReal TimeEmbedddedSystems.pdf — accessed 22.03.20009.

6. Spillner A., Linz T., Schaefer H. Software Testing Foundations. — Santa Barbara: Rocky Nook Inc.,
2007.-P.272

7. Towards Model-Driven Unit Testing [Electronic resource] / CiteSeer, 2006. -
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.62.200 — accessed 12.10.2008.

8. Kleppe A.G., Warmer J., Bast W. MDA Explained: The Model Driven Architecture: Practice and
Promise. — Addison Wesley Professional, 2003. — P.170.

9. UML Testing Profile, V 1.0 [Electronic resource] / OMG, 2008. -
http://www.omg.org/technology/documents/formal/test profile.htm - last accessed 12.10.2008.

10.UML Profile for Schedulability, Performance, and Time, V 1.1 [Electronic resource] / OMG, 2008.
—http://www.omg.org/technology/documents/formal/schedulability.htm — accessed 12.10.2008.

11.Grigorjevs J., Nikiforova O. Features of embedded systems that require specific testing approaches
/I Scientific Proceedings of Riga Technical University, 5, Computer Science. Applied Computer
Systems — Riga: RTU, 2007. — P. 229-241.

12.Grigorjevs J., Nikiforova O. Modelling of Non-Functional Requirements of Embedded Systems //
Scientific Proceedings of 42™ Spring International Conference MOSIS2008 — Ostrava: MARQ,
2008. —P. 13-20.

13.Grigorjevs J., Nikiforova O. Testing of Embedded System’s Non-functional Requirements //
Scientific Proceedings of the 8" International Baltic Conference Baltic DB&IS 2008 — Tallinn:
Tallinn University of Technology Press, 2008. — P. 411-414.

14.Grigorjevs J., Nikiforova O. Complience of Popular Modelling Notations to Non-functional
Requirements of Embedded Systems // Proceedings of the International Scientific Conference
Informatics in the Scientific Knowledge 2008 — Varna: University publishing house VFU
“Chernorizets Hrabar”, 2008. — P. 139-149.

Grigorjevs J., Nikiforova O. DaZi modelvadamas pieejas pamatprincipi iegulto sistemu testeSanai

Sis raksts ir veltits modelvaditas testéSanas pamatprincipiem konteksta ar iegulto sistému testéSanu. Raksta ir
sniegts iegulto sistému iss apraksts ar ieprieks izdalitam sistemu ipatnibas, kas prasa specialas pieejas to
testesanai. Tas ir: uzdevumu planosana, laika ierobeZojumi, uzdevumu sinhronizdcija, asinhrond darbiba un
drosums. Laika ierobeZojumu ipatniba ir izveleta, lai demonstrétu ipaso pieeju Sis ipatnibas specificesanai un

117

tas ietekmi uz testéeSanas modeli. Sistemas funkcionésanas modeli laiciguma definésanai tika papemts UML
profils uzdevumu planosanai, atrdarbibai un laikam, kas piedava specialas pakotnes laiciguma definésanai.
Saskana ar MDA pamatprincipiem, raksta ir prezentéta standartizeta OMG pieeja testéSanas modela
definésanai — UML testésanas profils, kas piedava neatkarigo metamodeli testésanas modela konstruésanai.
Raksta galvena ideja ir paradit modelvaditas testésanas pieejas pamatprincipus un sniegt vienkarsotus modefus
iegulto sistému laiciguma ipatnibas modelésanai. Rezultdta ir piedavati sistemas funkcionesanas modelis, kas
balstas uz UML profili uzdevumu planosanai, atrdarbibai un laikam, un testéSanas modelis balstits uz UML
testesanas profili. Abi modeli nodrosina vienkarsotus modelus laiciguma specificeSanai. Turpmdkais darbs
modelvaditas testésanas virziend ir transformacijas definesana starp izveidotiem modeliem ar mérki nodrosinat
automatisko testéSanas gadijumu generéSanu no sistemas funkcionésanas modela.

Grigorjevs J., Nikiforova O. Several outlines on model-driven approach for testing of embedded systems

This paper is devoted to model-driven testing approaches in the context of embedded systems. The article
discusses specifics of the embedded systems as well as specific testing approaches for them. As the testing
objects of embedded systems next non-functional requirements were previously selected: task scheduling, time
restrictions, synchronization, asynchronisms and reliability. Timing restrictions are selected for detailed
analysis in model specification. For this purpose Time domain from UML profile for Schedulability,
Performance and Time is presented and discussed. Testing model as destination model is specified using
standardized UML Testing profile, which provides general purpose metamodel for such model definition. The
main idea of the paper is to show general principles of the model-driven testing and to represent simplified
example of testing of the one specific feature of the embedded system. Discussed model-driven testing approach
is based on the model transformation, where the source model describes the feature of the system and the
destination model is the test case model. Transformation rules in future works will provide test case generation
using model of the system.

I'puzopuwes 10., Hukugoposa O. Ochosnble npunyunst mecmuposanus 6CROEHHbIX CUCHEM, O0CHOBAHHOZ20 HA
MOOeAX CUCmeMbl

B cmamve yoeneno enumanue 0CHOGHLIM NPUHYURAM MECMUPOBAHUS, OCHOBAHO20 HA MOOENSIX 8 KOHMEKCHe
BCTNPOECHHBIX CcUCmeM. A8mopvl npedocmasnaom Kpamkoe ONUCAHUE CUCIEMHBIX CBOUCME 6CHMPOEHHbIX
cucmem, mpebyowue CReyuaibHo20 nooxoda 8 mecmuposanuu. Takumu A6IAIOMCA: NAAHUPOBAHUE 3A0aY,
BpeMeHHble 0ZPAHUYEHUs, CUHXPOHU3AYUA 3a0a4, ACUHXPOHHble onepayuu u Haoéxcnocmob. Cgolicmeo
BDEMEHHBIX 02PAHUYEHUL 8bIOPAHO 01 OeMOHCMPAyuu 0c006020 NO0X00d K ONUCAHUIO 3MO020 CE0UCMEd 6
@DYHKYUOHATLHOU MOOeIU Ccucmemvl U €20 6GIUsAHUA HA MoOdenb mecmuposanusi. IIpedcmagnennas
@ynxyuonavuas mooenv cucmemwvl ochogana na UML npogune ona cucmem peanbhozo epemenu, a mMooeis
mecmog na cmanoapmusuposannom UML npogure mecmupoganus. OCHO8HOU yenvio OAHHOU cmamvu
A6JI1eMCSL ONUCAHUE OCHOBHBIX NPUHYUNIO8 NPOYECCA MECMUPOBAHUSL, OCHOBAHHO20 HA MOOEISX CUCHEMbL, d MAK
Jlce OeMOHCmpayusi YAPOweHHbIX Mooenell 0l OMoOPadiCeHusi BPeMEHHbIX CE0UCME BCMPOEHHLIX cucmem. B
cmamve npedocmasienvl QYHKYUOHATbHASL MOOenb cucmembl, ocHosannas na UML npoghune ons cucmem
PeanbHo20 8peMeHU, U mecmosdst MoOelb, OCHO8anHas Ha cmanoapmusuposannom UML npogune mecmos. Obe
MoOenu obecneuusaiom 00AeSUEHHYIO CREYUPUKAYUIO BPEMEHHBIX oOcpanuyeHull cucmemsl. Ilocaedyiowumu
wazamu OaHHO20 UCCIeO08ANHUS AGNACMCS CO30aHUe 3AKOHO8 MPAHCHOPMAYUL MEHCOY COZ0AHHBIMU MOOETAMU
¢ Yenvio obecneuums asMOMAMUYECKYIO 2CHEPAYUI0 MECMOBbIX CYHaAe8 HA OCHOBe (YHKYUOHATbHOU MOOenu
cucmemol.

118

