
International Conference on Computer Systems and Technologies - CompSysTech’ 2006

Comparative Analysis of EJB3 and Spring Framework

Janis Graudins, Larissa Zaitseva

Abstract: The paper describes main facilities of EJB3 and Spring Framework as well as the results of

their comparative analysis. Basic features of EJB3 and Spring Framework used for business component
management are outlined. The results of frameworks investigation and evaluation are considered. For this
purpose 13 criteria have been selected. Offered criteria allow selecting an appropriate framework for definite
requirements satisfaction.

Key words: Spring framework, Enterprise JavaBeans 3.0, Java2 Enterprise Edition, Business
components.

INTRODUCTION
Applications based on Java programming language take a significant part of

developed software. Java was initially created by Sun Corporation has strong open-source
community encouragement and extensively supported by IT giants like BEA Systems, IBM
Corporation and JBoss. Java is especially popular in large enterprise application
development. IDC market research has shown that 25.3% of surveyed large companies
use Java for their most important applications (October 2005 report) [7]. Java 2 Enterprise
Edition (J2EE) platform, which provides great opportunities for distribute systems
development, is used for the most enterprise applications and Enterprise JavaBeans (EJB)
technology is a heart of it. Usually architecture of J2EE application contains several
separate layers (Fig. 1). Server layer typically contains server components with application
business logic, which are managed by EJB container (EJB specification implementation).
EJB container is a part of the application server (typically EJB container and application
server cannot be separated and are produced by the same vendor). It provides server
component lifecycle, transaction and security management services.

Unfortunately, earlier versions of EJB were too complicated and new business

component management technology appeared. Spring Framework, which version 1.0
released in March 2004 [9], is a free open-source lightweight business components
container that can be used with and instead of EJB. In general, Spring Framework
provides some additional services like Spring Web Model View Controller (MVC), but they
are out of scope of this paper.

In the beginning let us briefly describe some basic features of EJB and Spring
Framework.

ENTERPRISE JAVABEANS
One of the EJB architecture goals is make it easy to write distributed object-oriented

business applications in the Java programming language [1]. Unfortunately, EJB versions
1.0 – 2.1 were too complicated and did not achieve this goal. The purpose of the EJB 3.0
release is to improve the EJB architecture by reducing its complexity from the enterprise

Figure 1. Classic 3-tier architecture

DB layer

Data
storage

J2SE/J2EE

Client layer

Rich client, WEB
application or WEB

J2EE

Server layer
(business logic)

EJB

- IIIA.18-1 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2006

application developer’s point of view [2]. To simplify EJB architecture the following
changes were done [3]:

• metadata annotations introduced in [10] can be used in combination or instead of
deployment descriptor to annotate EJB applications (specify component types,
behavior, etc.) as well as encapsulate environmental dependencies and resources;

• elimination of requirement for the specification of home and component interfaces;
• elimination of requirement for enterprise beans to implement specific interface

(javax.ejb.EnterpriseBean);
• simplification of enterprise bean types (entity beans removed);
• interceptor facility replaced requirement for the implementation of callback

interfaces;
• default values are used whenever possible (“configuration by exception” approach);
• reduction of the requirements for usage of checked exception.

Key features introduced in EJB 3.0 together with metadata annotations and
interceptors are the following:

• entity persistence was simplified and support for light-weight domain modeling
provided (Now it is possible to provide EJB 3.0 light-weight containers , that can be
used on client layer out of the application server box);

• enhancements to EJB QL and support for native SQL queries;
• EJB container-managed timer service provided, which allows executing enterprise

beans on specific time events.
At this moment EJB 3.0 specification still is in Proposed Final Draft status. It means

that its implementations cannot be fully completed by EJB container vendors until Final
Release issued.

SPRING FRAMEWORK
The main goal of Spring Framework producers was to create a simple alternative to

EJB. The simplification of the process of application development and testing is the key
goal of Spring. Framework is primary based on two core features: inversion of control (IoC)
and aspect-oriented programming [11].

Usually, objects obtain references to required objects by themselves (like in EJB 2.0,
bean retrieves needed resources using JNDI). Inversion of control allows injecting all
dependencies into bean in its creation time by some external manager. Bean is only
required to define required property in code and its mutator method (set() method).
Primary source for dependency injection is xml configuration file. For example
productService needs to perform some customerService operation. Then reference to
customerService will be injected in customer property of com.article.ProductServiceImpl
(Fig. 2).

Figure 2. Dependecy injection

Aspect-Oriented Programming (AOP) allows implementing more common services

(like transaction, security management, logging and etc.), which should be applied to
multiple components. In case of AOP usage component does not have any knowledge that

<beans>
<bean id="customerService" class="com.article.CustomerServiceImpl"/>
<bean id="productService" class="com.article.ProductServiceImpl">
<property name="customer" ref="customerService"/>
</bean>
</beans>

- IIIA.18-2 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2006

it is wrapped by some services. AOP used in Spring [8] (In EJB 3.0 AOP can be used
through Interceptors):

• To provide declarative enterprise services (e. g. declarative transaction
management);

• To allow users to implement custom aspects.
Spring provides a number of additional services, which are based on IoC and AOP

key features. These services should be compared with EJB services to make overall
frameworks evaluation. To compare both EJB 3 and Spring Framework a set of criteria is
offered.

COMPARING CRITERIA
The purpose of comparison is to show distinction between EJB3 and Spring

Framework. To achieve this goal the following criteria were selected:
1.) Transaction manager allows comparing kinds of supported transactions

implementations.
2.) Transaction opportunities criterion includes transaction attributes support,

isolation levels, flat or nested transaction support.
3.) Entity persistence helps to evaluate provided functionality for persistent objects,

Object-Relational Mappings (ORM).
4.) AOP (Interceptors) shows provided functionality for aspect-oriented programming.
5.) Application configuration – possibility to setup applications configuration and

declarative services.
6.) Security allows comparing provided security level and services.
7.) Services flexibility evaluates opportunity to replace services, wire required

services.
8.) Services integration detects integration opportunities, especially with application

servers.
9.) Additional functionality describes additional services provided by framework.
10.) Testability criterion is used for evaluation of testing, its simplicity and opportunity

to test all components
11.) Technology maturity, support. This criterion shows how mature is product and

companies that support it.
12.) Price – possible price of product (for EJB based on previous investigations in [4]).
13.) Documentation – provided documentation, examples and support.

Each criterion was evaluated in range from 0.0 (do not support) to 1.0 (completely
support). The results of EJB and Spring Framework evaluation are shown in Table 1.

Table 1
EJB and Spring evaluation by criteria

Eval. EJB 3.0 Spring Eval.
0.7 1. Transaction manager 0.9

Only JTATransactionManager can be used.
This is the primary manager used by business
applications and the only one that could be
used if application works with 2 (or more) data
sources

JTATransactionManager as well as selected
ORM provider transaction manager can be used
(Hibernate, JDO, JDBC, OJB)

0.6 2. Transaction opportunities 0.8
Only transaction attributes are supported,
transaction cannot be nested

Supports transaction attributes as well as
isolation levels, nested transaction supported if
transaction manager support them

0.9 3. Entity persistence 0.7
Own entity manager defined, possibility to use
annotations in ORM, EJB QL and native SQL

Third-party ORM implementations like
Hibernate, JDO, iBATIS, OJB

- IIIA.18-3 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2006

support, integration with Hibernate

1.0 4. AOP (Interceptors) 0.9
Default interceptors could be specified (apply to
all components), callback interceptors.
Interceptors could be implemented in the same
or separate class. Could be set using
annotations and deployment descriptor

Provide declarative enterprise services, custom
aspects could be defined

1.0 5. Application configuration 0.8
Primarily use metadata annotations, but it is
possible to override them in deployment
descriptor

Primarily use XML configuration file, possible to
use Jakarta Commons Attributes or standard
J2SE 5.0 annotations

0.9 6. Security 0.6
Supports declarative security through metadata
annotations and declarations in deployment
descriptor

Provides integration with open source Acegi
security framework, which supports declarative
security and based on IoC and AOP usage

0.7 7. Services flexibility 1.0
Depends on EJB implementation. If server
provides modular structure, then only required
services can be used

Any services can be assembled, using xml
configuration file

0.9 8. Services integration 0.7
Application server contains implementation of
EJB and it gives an opportunity to optimize
performance, clustering support

Spring framework is created separately from
application server and it more difficult to
optimize integration. Not applicable if no
application server is used.

N/A 9. Additional functionality N/A
Depends on EJB implementation (server
provider)

Provides integration opportunities with various
open-source products, Spring MVC

0.8 10. Testability 1.0
Most components are testable outside
container, but container service object should
be tested inside container (for example
EntityManager)

All component are testable outside container,
IoC allows to use mock object for testing
purposes

0.7 11. Technology maturity, support 0.6
EJB is standard, which created by experts from
different vendors (including Oracle, BEA, IBM),
all its versions are fully compliant. Only in PFD
status, no valid implementations

Open-source technology primarily supported by
Interface21. Is rather mature (2 years since
release 1.0), but not a standard

0.3 12. Price 0.9
Primarily paid product (free JBoss EJB
implementation)

Free open-source product

0.8 13. Documentation 0.5
Detailed EJB specification as well as application
server documentation is provided. Various
examples provided. Support from vendors

Documentation and Javadoc do not contain all
technical details, too few examples

Results of the comparison show that Spring framework is especially preferable for

using in small companies, which deal with various open-source products. It is very simple,
convenient and flexible framework, but very powerful in the same time. We can
recommend to use Spring in cases, when heavyweight component container is not
needed.

From the other side EJB 3 can be useful for companies, which plan to maintain long-
term applications based on EJB. This technology will be supported for a long time and new
versions will be always compatible with the old ones. EJB container integration with
application server provides great opportunities in scalable, highly optimized program
development.

- IIIA.18-4 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2006

CONCLUSIONS AND FUTURE WORK
The comparative analysis of EJB and Spring Framework has led to the following

conclusions:
• offered criteria and results of evaluation can be useful for IT companies, to assist in

business component management framework selection and usage;
• selected criteria are flexible, so it can be extended accordingly frameworks evolution;
• multiattribute method, introduced in [5], [6] can be used to made an overall framework

evaluation accordingly to company’s requirements.
In future: 1) Results of EJB3 evaluation will be re-examined and possibly changed

after final release is issued; 2) more detailed comparison should be done between EJB
ORM implementation and Hibernate (as primary ORM framework for Spring).

REFERENCES
[1] L. DeMichiel, “Enterprise JavaBeans Specification, Version 2.1”, [Online

document], Sun Microsystems, November 12, 2003, 646 pages, Available at HTTP:
http://java.sun.com/products/ejb/docs.html

 [2] L. DeMichiel, M. Keith “JSR 220: Enterprise JavaBeans, Version 3.0. EJB 3.0
Simplified API”, [Online document], Sun Microsystems, December 18, 2005, 59 pages,
Available at HTTP: http://jcp.org/aboutJava/communityprocess/pfd/jsr220/index.html

 [3] L. DeMichiel, M. Keith “JSR 220: Enterprise JavaBeans, Version 3.0. EJB Core
Contracts and Requirements”, [Online document], Sun Microsystems, December 18, 2005,
526 pages, Available at HTTP:
http://jcp.org/aboutJava/communityprocess/pfd/jsr220/index.html

 [4] J. Graudins “Comparing analysis of Java application servers”, Scientific
proceedings of Riga Technical University, 2004, p. 118 – 125.

 [5] J. Graudins, L. Zaitseva “Application Server Evaluation Method”, Proceedings of
the International Conference on Computer Systems and Technologies and Workshop for
PhD Students in Computing” (CompSysTech’05), 2005, p.IIIB.6-1 – IIIB.6-6.

 [6] J. Graudins, L. Zaitseva “Application Server Selection for definite systems’ class”,
Proceedings of 19th International conference “Systems” for Automation of Engineering and
Research” (SAER-2005), 2005, p.230 – 235.

 [7] S. Hamm, “Java? It’s So Nineties”, [Online document], BusinessWeek Online,
December 13, 2005, Available at HTTP:
http://www.businessweek.com/technology/content/dec2005/tc20051213_042973.htm

 [8] R. Johnson, J. Hoeller, A. Arendsen “Spring. Java/J2EE Application Framework”,
[Online document], 2004-2005, 290 pages, Available at HTTP:
http://www.springframework.org/documentation

 [9] R. Lambert, “An Introduction to the Spring Framework”, [Online document],
Chicago Java Users Group, June 21, 2005, Available at HTTP:
http://cjug.org/presentations/2005/June21/Spring-Framework-Intro-Rob-Lambert.ppt

 [10] R. Mordani “Common Annotations for the Java Platform”, [Online document],
Sun Microsystems, October 12, 2005, 32 pages, Available at HTTP:
http://jcp.org/aboutJava/communityprocess/pfd/jsr250/index.html

 [11] C. Walls, R. Breidenbach “Spring in Action”, Manning Publications, 2005, 472
pages.

ABOUT THE AUTHORS
Janis Graudins Mr. sc. ing., PhD student, Sun Certified Business Component

Developer for Java 2 Enterprise Edition, Software Engineering Department, Riga
Technical University, Phone: +371 641543, Е-mail: johnyk23@inbox.lv.

Prof. Larissa Zaitseva, Dr. sc. ing., Software Engineering Department, Riga Technical
University, Phone: +371 7089571, Е-mail: lzaiceva@egle.cs.rtu.lv.

- IIIA.18-5 -

