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Abstract. Management of the product life cycle and of the correspond-
ing supply network largely depends on information in which specific
phase of the life cycle one or another product currently is and when
the phase will be changed. Finding a phase of the product life cycle
can be interpreted as forecasting transition points between phases of
life cycle of these products. This paper provides a formulation of the
above mentioned task of forecasting the transition points and presents
the structured data mining system for solving that task. The developed
system is based on the analysis of historical demand for products and
on information about transitions between phases in life cycles of those
products.

The experimental results with real data display information about the
potential of the created system.

Keywords: Modular Neural Networks, Self-Organizing Maps, Product
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1 Introduction

Constantly evolving computer technologies are becoming more and more inher-
ent part of successful enterprises management and keeping its activity at a high
level. Different institutions are trying to reduce their costs by fully automatising
certain stages of manufacturing process as well as introducing various techniques
intended for forecasting certain market indicators that impact general manufac-
turing process. Different statistical methods are employed as well, though an
increasing interest in artificial intelligence technologies and their practical appli-
cation can be observed ever more.

For quite a long time neural networks have been one of the most popular
research areas in the field of various processes forecasting including non-linear
ones. The number of publications, books and monographs published within the
last few years gives apparent evidence of that. A special place among neural
networks is occupied by self-organising maps whose primary goal is to transform
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the incoming vectors of signals that are of deliberate dimensionality into single-
or two-dimensional discrete map.

This paper focuses on studying self-organising map’s ability to process discrete
time series of different duration. A task of product life cycle phase transition
point forecasting can serve as an example of analysis of different duration time-
series. From the viewpoint of the management it is important to know, in which
particular phase the product is. One of applications of that knowledge is selection
of the production planning policy for the particular phase [10]. For example, for
the maturity phase in case of determined demand changing boundaries it is
possible to apply cyclic planning [2], whereas for the introduction and decline
phase an individual planning is usually employed. This paper proposes a model
of modular multi-network system that ensures the solving of the aforementioned
task as well as provides an analysis of system testing results.

The paper is organised as follows: Section 2 formulates the task of forecast-
ing a product life cycle phase transition point, followed by the Section 3 with
structure of the created model presented and with functional aspects of the sys-
tem elements described. The gathered experimental results are presented and
analysed in Section 4 followed by conclusions.

2 Problem Statement

Any created product has a certain life cycle. The term “life cycle” is used to
describe a period of product life from its introduction on the market to its
withdrawal from the market. Life cycle can be described by different phases:
traditional division assumes such phases like introduction, growth, maturity and
decline [9]. For products with conditionally long life cycle, it is possible to make
some simplification, merging introduction and growth phases into one phase -
introduction.

An assumption that three different phases, namely, introduction, maturity and
end-of-life are possible in the product life cycle, gives us two possible transitions.
The first transition is between introduction and maturity phases and the second -
between maturity and product’s end-of-life.

From the side of data mining [3,4,5] information about the demand for a
particular product is a discrete time series, in which demand value is, as a rule,
represented by the month. A task of forecasting a transition points between life
cycle phases may be formulated as follows. Assume that D = {d1, . . . , di, . . . , dn}
is a dataset and d = {a1, . . . , aj, . . . , al} is a discrete time series whose duration
equals to l periods, where l ∈ L = {l1, . . . , lh, . . . , ls} and varies from record to
record in the dataset D. For simplification, the index of d is omited. Time series
d represents a particular phase of a product life cycle, say introduction. Assume
that for a particular transition, like introduction to maturity, a set of possible
transition points P = {p1, . . . , pk, . . . , pm} is available. Having such assumptions
the forecasting of a transition point for a new product, represented by a time
series d′ /∈ D, will start with finding an implication between historical data sets
D and P, f : D → P ; followed by application of found model to new data.
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3 Model of the Modular Neural Networks Based System

This section contains a description of the general structure of the proposed
system as well as provides information about the functions and importance of
each block of the system.

3.1 Structure of the System

The main distinctive feature of the developed modular multi-network system
(multiSOM system) is its ability to process discrete time series of different du-
ration l, that represent information about the changes in certain indicator over
time, e.g. previously mentioned demand for a product.

In general, the format of historical input data that could be processed by the
system has to comply with these conditions:

– Each record displays the demand for a product, collected within known pe-
riod of time, the length of which is set by the system - day, week, month,
etc. In other words, each record is a demand time series.

– Each record has one or both markers - transition indicators:

• marker M1 indicates the period when product switched from Introduc-
tion phase to Maturity phase;

• marker M2 indicates the period when product switched from Maturity
phase to End-of-Life phase.

– Each record has a marker indicating the moment of the actual beginning of
the Introduction phase (ABI).

The last condition is based on the fact that in many databases records are kept
from the defined moment in time. It is evident that not all historical products
were introduced on the market at the same moment in time. Marks on transitions
can guarantee that a model will be build; if we have patterns of transitions in
historical data, then, theoretically, in presence of a model for generalisation, we
are able to recognise those patterns in new data. To lessen the impact of noisiness
and dominance of data, the dataset should be preprocessed. Data should be
normalized and obvious outliers should be excluded [13,14].

Figure 1 shows a structure of the proposed system consisting of three main
blocks: Data Management Block, Neural Block and Decision Making Block.

Data Management Block. The Data Management Block (DMB) performs tasks
of processing input data and their distribution over modules in Neural Block.
Data distribution over neural modules occurs in accordance with load distribu-
tion policy specified by the user. Let us define total system load as the number
of elements in set L. At the given distribution, load distribution policy shows
which part of general load will be taken by each neural module. The chosen
distribution directly affects the number of neural modules in the system.

Let us illustrate load distribution. Assume that the duration of discrete time
series in dataset D varies from 4 to 11 periods, thus l ∈ L = {4, 5, . . . , 11}. In this
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Fig. 1. Structure of the system

case, total system load will consist of eight values that time series duration can
take. Let us assume that the load has to be distributed uniformly over modules
at the condition that an individual load on separate module should not exceed
three values that is q = 3. Under such conditions, three neural modules will be
created in the Neural Block by the moment of system initialisation. The first
neural module will process time series of duration l ∈ {4, 5, 6}; records with
l ∈ {7, 8, 9} will be sent to the second module. The remaining time series with
duration of 10 and 11 periods will be processed by the third neural module.

In the real world situation, the information about the demand for a new
product is becoming available gradually: after a regular period finishes, new
demand data appear. Due to that specifics of system application environment,
at the stage of learning it is necessary to use On-line data flowing imitation
procedure. This procedure is implemented at the DMB level. The algorithm
employed is executed taking into account the following details. Time series d
contains demand data within introduction or maturity phase; it has duration
l and is connected with the appropriate marker (M1 or M2 depending on a
represented phase of a product life cycle) with value p. Provided that the system
is able to process discrete time series with durations equal to lmin and greater,
the algorithm of On-line data flowing procedure will include these steps:

1. Define l∗ = lmin;
2. Send to the system first l∗ periods of record d and a marker value p;
3. If l∗ < l then increase value of l∗ by one period and return to step 2; else

proceed to step 4;
4. End processing of record d.

Figure 2 illustrates execution of On-line data flowing procedure at q = 3.
Data processing without imitation of data flowing, Off-line data processing

is based on this principle: at the moment when record d is ready to be sent to
the system, the entire record with marker p is being sent to the corresponding
module.
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Fig. 2. On-line data flowing

Neural Block. According to the system structure depicted in Figure 1, DMB
directs the data further to the corresponding modules of Neural Block (NB).
Each module is a self-organizing neural map; according to the chosen policy of
system load distribution it processes specific fraction of input data. The number
of modules in the Neural Block, as well as the number of synaptic weights neurons
will have in each neural network, is also affected by the chosen policy of system
load distribution.

Each self-organising map is based on the modified Kohonen map. The neces-
sity to modify the classical Kohonen map appears because of the stated task to
use the same SOM for processing discrete time series of different duration. The
number of synaptic weights of a neuron in the classical Kohonen map equals to
the length of records - the duration of time series, in the input dataset [6,8,11,1].
Due to such limitations, it is possible to use the classical Kohonen map in the
developed system only when q = 1 for each neural network. For to be able to
maintain the system functionality while q > 1, it is necessary to apply some
modifications to the classical Kohonen map.

In this work a heuristic, based on substituting the distance measure, is consid-
ered. We propose substitution of a Euclidean distance measure with a measure
based on Dynamic Time Warping. Using DTW allows one to process time se-
ries with different duration. Classical Dynamic Time Warping algorithm, that is
applied in the system, is fully described in [7]. The Dynamic Time Warping al-
gorithm was experimentally compared with Derivative Dynamic Time Warping
algorithm in the scope of the task, defined in Section 2, (see source [12]). The
gathered results speak in favour of using the DTW for the specified task.

Functional aspects of NB are as follows: in the NB neural maps are organised
at the stage of learning after that clusters are formed in each map; whereas at
the stage of system application NB determines object’s -record’s or time series’-
membership in one of previously formed clusters and forwards information from
cluster further according to the scheme of transition point determination.
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Decision Making Block. Decision Making Block is the one that receives informa-
tion from the Neural Block on the best matching cluster found for a particular
object. Following certain algorithms, whose examples are provided in the next
section, a decision is shaped regarding a current object. The decision can contain
both a particular value and a percentage distribution among several possible val-
ues of transition points. Taken into account that the final decision is made by a
decision making person, the second option proves to be most preferable.

3.2 Basic Algorithm of System Functioning

The basic system functioning algorithm consists of the following three main
stages: System training; System testing and validation and Application of the
system to the real world problem. These stages are graphically displayed in
Figure 3 and as can be seen from the scheme, the system functioning algorithm
is cyclic.

1. System training 2. System testing
and validation 3. Application

Fig. 3. General steps of the algorithm

As the system is employed, new data are accumulated an increase in whose
amount will inevitably lead to the necessity to update the system. This process
is initiated by feedback from step 3 to step 1. In its turn, feedback from step 2 to
step 1 enables entering necessary corrections into the system even at the testing
stage, which is more convenient from the viewpoint of management as compared
to error correction after the application of the system to the real world problem.
The following current subsection considers each of the three steps in more detail.

Step 1. System Training. The initial phase of system training process is determi-
nation and setting of basic system’s parameters: the number of neural networks
(modules) in the system, dimensionality and topology of networks and the num-
ber of synapses each neuron will have in each network. The number of modules
in a neural block, n, is calculated empirically. Given a policy assuming uniform
distribution of general load among the networks, formula (1) can be used to
calculate the number of modules in the system:

n =
⌈ |L|

q

⌉
, (1)

where q - each network’s individual load; �·� - symbol of rounding up.
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In parallel with calculating the number of modules in the system, it is nec-
essary to determine a topology of neuron dislocation in the network. Several
frequently used topologies can be applied [8,1] - tetragonal, hexagonal and a
combination of the first two mentioned (see Figure 4).

a) b) c)

Fig. 4. Network topologies: a) - tetragonal; b) - hexagonal; c) - a) and b) combination

After the number of modules, n, is determined, for each module mi an interval
of time series durations [li,min; li,max] is set. The records with duration l ∈
[li,min; li,max] will be processed by module mi. Given a uniform load distribution,
equation (2) can be used:

{
i = 1, li,min = lmin ,

i > 1, li,min = li−1,max + 1 ;

li,max = li,min + q − 1 .

(2)

The number of neurons of each network is determined empirically depending
on the task stated. The number of synapses of a neuron in each network can be
calculated using formula (3) below:

bj,i =
⌈

li,min + li,max

2

⌉
, (3)

where bi,j is the number of synapses of a neuron j in the network mi.
As an alternative, a median calculation can be used for determining the

number of synapses of a neuron. Assuming that module mi can process dis-
crete time series of duration l ∈ [l1, l2, . . . , li, . . . , lk], let us denote for each
value l the number of records in the training set having duration equal to l,
as f ∈ [f1, f2, . . . , fi, . . . , fk]. By having such an assumption, a median of time
series durations a module mi can process, may be calculated with formula (4):

Median =
∑k

i=1(li · fi)∑k
i=1 fi

. (4)
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The calculated median must be rounded to the integer thus obtaining the
number of synaptic connections of a neuron. Will the median be rounded to a
smaller or a greater value, to a large extent depends on the task to be solved.

As the main parameters are set, the initialisation of the system begins. Synap-
tic weights of each neuron in each network are assigned initial values - usually
small values produced by random number generator. At this moment networks
in the system have no organization at all. Then the following main processes are
launched: Competition, Cooperation and Synaptic adaptation.

According to the selected process of data input, Data Management Block for-
wards each record of the training set to the corresponding network. Then the pro-
cess of neuron competition for the right to become the winner or best-matching
neuron for the arrived record begins. Discriminant function - the distance be-
tween the vector of the synaptic weights and discrete time series - is calculated
using the DTW algorithm. Thus the neuron with the least total distance becomes
the winner or best-matching neuron.

The winner neuron is located in the centre of the topological neighbourhood
of co-operating neurons. Let us define lateral distance between the winner neu-
ron (i) and and re-excited neuron (j), as ldj,i. Topological neighbourhood hj,i

is symmetric with regard to the point of maximum defined at ldj,i = 0. The
amplitude of the topological neighbourhood hj,i decreases monotonically with
the increase of lateral distance ldj,i, which is the necessary condition of neural
network convergence [6]. Usually a Gaussian function if used for hj,i calculation
(formula 5).

hj,i(d) = exp

(
− ld2

j,i

2 · σ2(n)

)
. (5)

A decrease in the topological neighbourhood is gained at the expense of sub-
sequent lessening the width of σ function of the topological neighbourhood hj,i.
One of possible kinds of value σ dependence on discrete time n is an exponential
decline (formula 6).

σ(n) = σ0 · exp
(
− n

τ1

)
n = 0, 1, 2, . . . , (6)

where σ0 is the beginning value of σ; τ1 - some time constant, such as the number
of learning cycles.

To ensure the process of self-organisation, the synaptic weights of a neuron
has to change in accordance with the input data, i.e. adapt to the input space.
Let us assume that wj(n) is the vector of synaptic weights of neuron j at time
moment (iteration, cycle) n. In this case, at time instant n+1 the renewed vector
wj(n + 1) is calculated by formula (7):

wj(n + 1) = wj(n) + η(n) · hj,i(d)(n) · (d − wj(n)) , (7)

where η - learning rate parameter; d - discrete time series from learning dataset.
Note how the difference between discrete time series and the vector of synap-

tic weights is calculated in expression (7). When the load is q = 1, that is when
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each neural network is processing discrete time series with a certain fixed du-
ration, and DTW is not used, the difference between d and wj(n) is calculated
as the difference between vectors of equal length. In other cases when DTW
is employed, the fact of time warping has to be taken into account. For this
purpose, it is necessary to fix in the memory a warping path on whose basis
the distance between the vector of synaptic weights of the winner neuron and
discrete time series was calculated. Thus the following information is becoming
available: according to which value of the discrete time series the corresponding
synaptic weight of the neuron has to be adjusted.

The network organization contains two main processes - initial organization
followed by convergence process. The initial organisation takes about 1000 itera-
tions. During this process each network gets an initial organization, the learning
rate parameter decreases from 0.1, but remains above 0.01.

The number of iterations the convergence process takes is at least 500 times
larger than the number of neurons in the network. The main difference from
the initial organization is that during the convergence process the topological
neighbourhood of a winner neuron contains only the closest neighbours or just
the winner neuron.

As soon as the process of self-organising neural network training is finished,
the process of cluster formation begins. Each record d of the training set is passed
to the system. The same principle of data input (On-line/Off-line) is used as in
organizing neural networks. Algorithms for module mi and winner neuron n∗

j

determination fully coincide with those used in network organization.
In parallel, for each neuron n∗

j these statistics are kept: records with which
value of the key parameter p have got to neuron n∗

j and how many times. Cluster
ci is a neuron nj that at least once became the winner neuron during cluster
formation.

Once the last record of the training set is processed, for each cluster c ∈
C, C = {c1, c2, . . . , cf} a base value of the key parameter p∗ is defined which will
be produced by the system as an output for record d that has got to the given
cluster during system testing.

The simplest way to determine the base value of the key parameter p∗ for
cluster ci is to select value p = p′ that has the highest frequency according to
the previously collected statistics for values p in cluster ci.

Situations might occur when a cluster has several possible values p′. As of
today, in the system developed by the authors, if the above situation occurs, the
least by module value p′ is assumed as a base value of the key parameter. As
applied to the task of product life cycle phase transition period forecasting, it
means that the value will be chosen that forecasts transition in earlier period as
compared to others. Also variants are possible, when out of several p′ the largest
by module value p′ is chosen or the value p′ closest to the median of distribution
of values p fixed in the cluster.

Step 2. System Testing and Validation. To test the system, the same data input
principle (On-line/Off-line) is used as in organizing neural networks. Two criteria
are employed to evaluate the effectiveness of the system: Mean Absolute Error
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- MAE, to evaluate the accuracy of the system and Logical Error to evaluate
whether decisions made by the system are logically correct. The Mean Absolute
Error (MAE) is calculated using formula (8):

MAE =
∑k

i=1 |pi − r|
k

i = [1, 2, . . . , k] , (8)

where k - the number of records used for testing; pi - real value of the key
parameter for record di; r - the value of the key parameter forecasted by the
system.

Logical error provides information about the logical potential of the system.
To calculate the logical error, it is necessary to define logically correct and logi-
cally incorrect decisions. As applied to the task of forecasting product life cycle
phase transition period, logically correct and logically incorrect decisions could
be described as follows:

1. Assume that discrete time series d, entering the system has a duration equal
to ld but the value of the key parameter - the period of product life cycle
phase transition, is p = pd, where pd > ld. This statement means that a real
time of transition between the phases of the product life cycle has not come
yet. Accordingly, logically correct decision is to forecast transition period rd,
where rd > ld. Logically incorrect decision in this case will be if rd ≤ ld.

2. Assume that discrete time series d, entering the system has a duration equal
to ld but the value of the key parameter - the period of product life cycle
phase transition, is p = pd, where pd ≤ ld. This statement gives evidence
that real transition moment has already come. Accordingly, logically correct
decision could be forecasting transition period rd, where rd ≤ ld. In its turn,
logically incorrect decision will take place if rd > ld.

The statement that at rd = ld transition has occurred can be considered
correct as the availability of data about some period in record d shows that
the period is logically completed and, consequently, the transition - if any was
assumed in this period - is also completed.

Step 3. System Application. Application of the system means not only using a
model, but also monitoring the performance of the system and collecting the new
data. As the new data is collected, the steps of the main algorithm should be
repeated (see Figure 3), and the system (neural modules) must be reorganized.

4 Experiments and Gathered Results

The fact that the data describes real life process and marks of transitions were
putted by experts implies that some noisiness in data is present.

The obtained dataset contains 312 real product demand time series with min-
imal duration equal to 4 and maximal - to 24 periods. Each time series contains
the demand during the introduction phase of a specific product plus one period
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of the maturity phase, and is marked with M1 marker. Table 1 presents an ex-
ample of data after the normalization process is finished. The first 11 periods are
given. To normalize the data, the Z-score with standard deviation normalization
method was applied. As the true bounds of the demand data in the dataset are
unknown and the difference between values of various time series is high, the
chosen normalization method is one of the most suitable ones.

Table 1. Example of normalized data (first 11 periods)

ID M1 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

1 3 -4.620 0.060 -0.127 0.247

2 8 -0.493 -0.549 -0.361 -0.607 -0.623 -0.596 1.592 1.637 -2.817

3 23 -1.790 -1.664 -1.352 -1.070 -0.893 -0.807 -0.886 -0.547 -0.683 -0.149 -0.133

4 17 -0.969 -0.262 -0.800 0.044 -0.545 -0.169 -0.491 -0.329 -1.078 -0.188 -1.147

5 8 1.625 1.582 1.512 1.872 1.723 1.785 -0.623 -0.581 -0.403

6 23 0.454 -0.092 -0.492 1.009 -2.080 -0.741 0.908 -2.454 -0.549 0.870 0.309

Figure 5 displays all periods for the same time series as presented in Table 1.
As can be seen, the time series differs not only in duration, but also in amplitude
and its pattern.
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Fig. 5. Example of normalized data

The main target of the performed experiments was to analyse comparatively
the precision of the system with different neural network topologies applied while
using different network load q. The system was tested by sequentially applying
each of three mentioned neural network topologies (see Figure 4) while network
load q was changing incrementally from one to five. To calculate the system
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errors - Mean Absolute Error (MAE) and Logical Error (LE), a 10-fold cross
validation method was applied, totally giving 150 system runs.

Table 2 contains the number of neurons in a neural network for each of three
topologies, as also supplies the number of training and convergence cycles.

Table 2. Network and learning parameters

Topology Neurons Training cycles Convergence cycles

a 25 1000 12500

b 37 1000 18500

c 25 1000 12500

The learning parameters, used for network organisation in each run, are given
in Table 3. For each learning parameter the starting value and the minimal
(last) value are supplied, as also the type of a function used for managing the
parameter decline process.

Table 3. Learning parameters

Parameter Starts with Ends with Function

Learning coefficient - η 0.9 0.01 Exponential

σ for Gaussian neighbourhood 0.5 0.01 Exponential

While testing the system in Online mode, for each neural network topology
and for each of five defined values of q a Mean Absolute Error and a Logical
Error were obtained. The gathered results are accumulated in Table 4 and Table
5, and graphically displayed in Figures 6 and 7 respectively.

Table 4. On-line Mean Absolute Error - MAE

Topology q = 1 q = 2 q = 3 q = 4 q = 5

a 2.917 2.950 2.940 3.186 3.042

b 3.061 2.912 3.151 2.989 3.152

c 3.066 3.148 3.166 3.267 3.102

The obtained results show that created system with certain precision is able to
predict transition points for new products, using a model, built on a historical
data. In On-line mode System was able to make a logically correct (refer to
“System Testing and Validation” step in subsection 3.2) decision in at least
82.7% and at most in 86.5% of times. Thus the Mean Absolute Error lies close
to three periods. Such an error may be unacceptable for a system, a forecast of
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Table 5. On-line Logical Error - LE

Topology q = 1 q = 2 q = 3 q = 4 q = 5

a 16.1% 13.5% 13.9% 15.3% 14.2%

b 17.3% 14.7% 15.3% 16.2% 15.4%

c 16.6% 15.4% 15.6% 16.0% 14.0%
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Fig. 6. On-line Mean Absolute Error
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Fig. 7. On-line Logical Error

which will be just accepted without any further processing. Again mentioning
the specificity of the dataset obtained and also bringing the point that the final
decision is made by a decision making person, it is possible to conclude that the
created system can be used as a data mining tool to gain an additional knowledge
for solving a product life cycle phase transition points forecasting task, as well
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as other tasks, connected with forecasting a value of a target parameter for a
time dependent variable.

5 Conclusions

For the practitioners of management of the product life cycle the knowledge,
which describes in which phase the product currently is and when the transition
between phases will occur, is topical. Such knowledge, in particular, helps to se-
lect between the cyclic and non-cyclic policy of planning supply chain operation.

In this paper, the task of forecasting the transition points between different
phases of product life cycle is stated, and the structure of data mining system,
which helps to solve this task, is shown. On the basis of the analysis of historical
demand data for products it is possible to learn the modular neural network
based system, which will be able to forecast the transition points in life cycle
of new products. Experimentally gathered results show that the created system
has its potential and can process real demand data, returning a forecast with a
certain precision.

One aspect is that in the future it is necessary to examine the developed
system on the data from different production fields, and, which is also important,
to have a response from practitioners of supply chain management who will use
these systems. Also relevant is to consider and analyse the possibility of using
other Data Mining techniques in in the place of the Self-Organising maps.

Another aspect, modest data volume that was used for practical experiments,
is related to the fact, that it is necessary to have transition marks in historical
data from experts and practitioners. The more products, the more complicated
for human to make all these marks - in practice the amount of marked data will
always be restricted. As a result, possible direction of future research is treatment
of forecasting the transition points in the context of a semi-supervised learning
[15]. In this case, there is a small set with marked transitions and also a large
dataset in which transitions are not marked. In such a situation it is necessary
to create a model, which will be able to apply the knowledge, gathered on the
small set of marked data, to the new (test) data.
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