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Abstract. Design with rubber (elastomer) – metal elements (futter – RME) is successfully used for the 

construction machine. Due to the continual development of machinery and equipment, they are ever increasing 

in intensity and dynamic load requirements of the components of the relative position accuracy. The relative 

position variation (such as radial, sharp and angular displacement transmission shafts, bearings sitting 

inaccuracies, delays threaded plugs, etc.) may result from deficiencies in the assembly, temperature changes and 

deformation forces, process constraints. To analyze the RME construction work there is a need to know 

elastomer mechanical modules. In work it is offered to define the factor of Poisson’s ratio from experiments on 

axial compression of multilayered packages from thin-layer elastomer layer. To exclude influence of ruggedness 

of experimental installation on the indication of the devices, it is offered to select a number of layers in a 

package and geometrical parameters elastomer layers so that deposit of a layer at the expense of the change of its 

form and compressibility elastomer, were one order. For processing of the experimental data it is offered to use 

analytical decisions (“force-settlement”) for a package from thin elastomer layers. The calculation example 

confirms applicability of the considered technique for definition of the factor of Poisson’s ratio for elastomers. 
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Introduction 

Over the past 20-30 years, using the specific properties of rubber (elastomer) (high elasticity, 

resistance to environmental influences, good dynamic performance, low compressibility, almost linear 

relationship between stress and strain at strains up to 15÷20 %) shock absorbers were developed. For 

efficient utilization of rubber elements in modern mechanical engineering, including vibration 

insulation, it is necessary to be able to calculate the characteristics of compressive stiffness of rubber - 

metal elements (futter RME). For poorly compressed elastomers (rubbers) experimental definition of 

the value of the factor of Poisson’s ratio, as even the small error of this factor leads to essential errors 

at analytical calculation deposits thin-layer elastomer elements, is problematic. In the work it is 

offered to define the factor of Poisson’s ratio from experiments on axial compression of multilayered 

packages from thin-layer elastomer layer. To exclude the influence of ruggedness of experimental 

installation on the indication of devices, it is offered to select a number of layers in a package and 

geometrical parameters elastomer layers so that deposit of a layer at the expense of the change of its 

form and compressibility elastomer, were one order. For processing of the experimental data it is 

offered to use analytical decisions (“force-settlement”) for a package from thin elastomer layers. The 

calculation example confirms applicability of the considered technique for definition of the factor of 

Poisson’s ratio for elastomers. 

Manufacture of high precision machinery compensatory RME may be required for very high: a 

high rigidity and load carrying capacity of the basic direction of loading and at the same time low 

resistance to displacements in the direction of compensation, to be able to compensate for even the 

smallest displacement and vibration.  

Elastomer mechanical modules 

Elastomer share of the operating compression determines the importance of the landed value of 

the force acting on the elastomer compression direction. Usually in calculations elastomer weak 

compressibility effects (Poisson’s ratio) are not taken into account and the elastomer is characterized 

only by the shear modulus G or the elastic modulus E. If, µ ≈ 0.5 then, E = 2(1 + µ)G ≈ 3G and 

elastomer aspect ratio error of the low compressibility of non-compliance with the balance of perched 

is far less, if the resulting mainly perched depends on elastomers in shape. If the elastomeric elements 

are plans (а / h > 10, where: a, h – respectively, an elastomer layer width and height), then the power – 

sat down in an analytical dependence on analytical calculation is necessary to take into account the 

elastomeric layer of weak compressibility effects, which depend on the Poisson’s ratio µ values. To 
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calculate such elastomers it is necessary to employ the module of volume compression. 

)21(3 µ−
=

E
K  

If the Poisson’s ratio µ is close to 0.5, the spatial compression modulus K is strongly dependent on 

the Poisson’s ratio values of accuracy, but the modulus of elasticity E changes very little. This is 

shown in Table 1. 

 Table 1 

Poisson’s ratio Modulus of elasticity 
Spatial compression 

modulus 

µ = 0.45 ±1 % = 0.45450÷0.44550 E
*
 = (1.0031÷0.9968) E  K

*
 = (1.0992÷0.9168) K 

µ = 0.49 ±1 % = 0.49490÷0.48510 E
*
 = (1.0033÷0.9967) E K

*
 = (1.9608÷0.5100) K 

µ = 0.495 ±1 % = 0.49995÷0.49005 E
*
 = (1.0033÷0.9934) E K

*
 = (100÷0.5025) K 

From Table 1 it follows that if the Poisson’s ratio values are approaching 0.5, there is a very 

precise set factor value. Currently there is no such method, which allows so precisely to determine the 

Poisson’s ratio. 

Possible variants of experiments 

Elastomer element perched below the load can be conditionally divided into two parts: 

 SF ∆+∆=∆  (1) 

where F∆  – elastomeric element landed the part which is related to its shape (mostly sat down 

when the RME geometric parameter a / h < 2÷5), – elastomeric element landed the part 

which is related to its compressibility (mostly sat down when the RME geometric 

parameter a / h >> 10). 

S∆ – elastomeric element’s settlement that is associated with a change of the elastomer 

volume. 

In order to accurately determine the Poisson’s ratio, it is necessary to define precisely the 

elastomeric element perched share, which is related to the compressibility. In theory, two methods can 

be used: 

1. take a very thin elastomeric element, which perched part is much less than the sat down in part; 

2. use the volume compression experiments to delete the perched share. 

Both these options would not give accurate results because: 

The first version, which has taken a very thin elastomeric element, needs very sophisticated 

equipment and precision measurement (see Fig. 1, a), the elastomeric elements of the plan hardness 

are close to the experimental equipment and material hardness can reach 25 kgs·mm
-2

. It would be 

difficult to divide, where the elastomeric element deformation is and deformation of the equipment;  

The second version, the elastomers are limited in shape (see Fig.1, b.), form the same problems. 

a) b)  

Fig. 1. Possible variants of experiments 
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Recommendable variants of experiment 

To remove the maximum hardness of the pilot plant, it is proposed to use experiments with multi-

layer package of plans to sharp compression of the layers of elastomer. Followed to the recommend 

such elastomeric layer dimensions (a, b and h), the elastomer component parts and landed value were 

one order. With such techniques, principally the pilot scheme is given in Fig. 2. 

 

Fig. 2. Recommendable variants of experiment 

To analyze the experimental data (calculated Poisson’s ratio µ value), we use the known 

analytical solution “force (Pz) – settlement (∆)” multi-layer rubber – metal element to the central axis 

compression. 

Materials and methods 

The method of obtaining analytical dependence “force-settlement” of multi-layer compensating 

element under axial compression is considered. Application of the proposed method is shown by the 

example of designing a multi-layer shock-absorber, which consists of thin flat rectangular elements.  

The geometrical design model is shown in Figure 3 (a) and (b).  

a)  

b)  

Fig. 3. Model of calculation: a – shock absorber; b – n
th
-layer of shock absorber 
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The proposed method is using the variational method, which is based on the principle of minimal 

potential energy [1] for low compressible materials. The potential energy of the studied element in 

case of small deformations is written this way: 
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where Gi – modulus of rigidity for each layer;  

 µ i – Poisson’s ratio of material of each rubber layer;  

 P – longitudinal force of compression;  

 ∆ – settlement of entire element;  

 si – hydrostatic pressure function in each layer;  

u, v, w – displacements of randomly chosen points in each layer of the layer, respectively, 

in directions x, y, z;  

V – volume of each layer. The summing up is carried out for all rubber and non-

elastomeric layers of a multi-layer element. 

Deformations εij in each layer are found using formulae: 
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The potential energy for the entire element is calculated by summing up formula (2) for all rubber 

and non-elastomeric layers. Physical and mechanical features of the material layers and geometrical 

parameters of layers have such indexes: e – for rubber layers; m – for non-elastomeric layers. 

In order to use functional (2) when choosing functions of displacements  (x, y, z), v(x, y, z), w(x, y, 

z) and functions of hydrostatic pressure s(x, y, z), it is enough to fulfil geometrical boundary conditions 

and the conditions of coupling rubber and non-elastomeric layers for displacement functions. For 

simplicity let us suppose that all the layers have the same dimensions in the design (a and b), all the 

rubber layers have the width he, and the non-elastomeric layers have the width hm. For the considered 

problem the necessary geometrical conditions are: 

 we(x, у, 0.5he) = -0.5∆; we(x, у, -0.5he) = 0.5∆ 

 uе(x, у, ±0.5hе ) = um(x, у, ±0.5hе); vе(x, у, ±0.5hе) = vm(x, у, ±0.5he)  (4) 

When writing displacement functions analytically let us suppose that: for rubber layers the 

hypothesis of plane sections is true; for non-elastomeric layers the condition of homogeneous 

deformation is fulfilled.  In this case, taking into account the geometrical conditions (4), the desired 

displacement functions can be chosen in the form for: 

• rubber layers: 

 uе = С1x( z
2
 - he

2
/4) + K1x; ve = С2 у(z

2
 - he

2
/4) + K2у; 

 we = -С3(z
3
/3 - zhe

2
/4)/he

3
 - С4z; se = С5(z

2
 - he

2
/4); (5) 

 

• non-elastomeric layers: 

 um = K1x, Vm =K2 у, wm = sm = 0, wm = sm = 0. (6) 

С1, С2, С3, С1, С2, K1, K2 – are unknown constants, which can be found using the settlement of the 

element ∆ from the minimum condition of full potential energy of deformation (2) of the entire 

element:  
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where  ∆ – desired unknown settlement of the element, which, by using equations (4)-(7), can be 

found from the equation: 

 ∆ = -С3hе
3
/6 + С4hе. (8) 

From algebraic equation system (6) and (7) for the considered element the desired dependence 

“force-settlement” can be written as: 
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where а, b, he, hm – are geometrical parameters of flat rectangular rubber and non-elastomeric 

layers; 

Ge, Gm – modulus of rigidity of material, respectively, of rubber and non-elastomeric 

layers; 

 n – number of rubber layers in the packet. 

If rubber and non-elastomeric layers have different dimensions, which let us ignore the low 

compressibility of rubber layers and flexibility (he < hm, Ge << Gm, t.i. parameter χ → ∞) of non-

elastomeric layers, then from formula (7) we obtain the dependence for element settlement: 
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which coincide with the dependence “force-settlement”, obtained in the work [3] without taking into 

account the compressibility of rubber and deformation of non-elastomeric layers.   

The authors in work [3] show the dependence “force-settlement” results of RME, which is 

derived from a rectangular cell (a = b = 40 mm, he = 0.2 cm, Ge = 4.5 kg·cm
-2

, hm = 0.02 cm, 

Gm = 2.8·10
5
 kg·cm

-2
) central axis compression. Table 3 gives the Poisson’s ratio results from the 

formula (9). 

Table 3 

Poisson’s ratio values 

Rubber grade 
Rubber shear 

modulus G, kgs·cm
-2

 
Poisson’s ratio, µ 

8871 4.5 0.4981 

8470 8.0 0.4931 

ИПР-1124 16.0 0.4903 

The obtained results are verified, calculating the dependence “force-settlement”, for RME with 

other geometric dimensions and comparing with the experimental results. 

Elastomeric elements:  
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a = b = 8 cm, he = 0.2 cm, Ge = 4.5 kg·cm
-2

, hm = 0.02 cm, Gm = 2.8·10
5
 kg·cm

-2
, P = 4000 kg 

The dependence “force-settlement” is calculated with formula (9), and is compared with the 

experimental data of the work [3]. ∆exp = 1.41·10
-3

 cm, which coincides well enough to calculate 

landed from formulas (9) – ∆calc = 1.38·10
-3

cm. The obtained result is in good agreement with the 

experiments. 

Conclusions 

The issue in methodology makes it possible, through multi-layer planning RME packet sharp 

compressive loads, with sufficient precision of the Poisson’s ratio, which is necessary to know, to 

analyze and to design effective rubber – metal elements with thin elastomer layers. The methodology 

takes into account deformation of not elastomeric layer that increases exactness. Having the 

experimental data from ∆exp formula (9) or from formula (11) if it is possible to ignore deformation of 

not elastomeric layer, it is easy to get the values of Poison’s ratio. 
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