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Abstract: In the integral representation of the solution to the vector Helmholtz equation known in literature the
electromagnetic field vector potential is expressed in terms of a triple integral of multiplication of current density
vector and fundamental solution of the scalar Helmholtz equation. This representation has the simplest form in the
rectangular coordinate system, in which the unit vectors €,,€ ,€, do not depend on coordinates. In the present paper

the integral representation of the solution to the vector Helmholtz equation is obtained for the system of arbitrary
orthogonal curvilinear coordinates, in which the unit vectors €,,€,,€,, are prescribed functions of coordinates. As

€,,6
al’
particular cases of the representation obtained, the integral representations of the solution to the vector Helmholtz

q2!

equation are found for the systems of cylindrical and spherical coordinates.
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1 Introduction
The Helmholtz equation for the vector potential used
in electrodynamics has the form

PO - o 9% o?
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Hokt ox’ oy’ oz’
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where k? =p s,uew?, 15 =1%(M) is the external
current vector density; ¢, and u, are the electric and
magnetic constants, respectively; & and u are the

relative  permittivity and  relative  magnetic
permeability of the medium, respectively.

Vectors A(M) and 1°(M) in the system of
Cartesian coordinates has the form

AM)=A (M), +A (M, +A,(M,, (2)
[E(M)=15(M)E, +15(M)E, + 15 (M)E,. (3)

Consider the integral representation of Helmholtz
equation in the vector form for a point M(x,y,z)

situated in the region, where the external current
vector 1 =0 (see [1], page 322):

_ (- Kryg)
A(M)=%I\7” | e(M)—exlo(rMJMrMM)dv , 4)

where the integration is performed over the points
M(X,y,Z)eV , in which 1®#0; x=1 e=1 since
the wire is situated in free space, r, - is the distance
between the points M (x,y,z) and M(X,Y,Z):

fi =702+ (y-7)? +(2-2)? . 5)
Conditions for all the components, A, , AL A, of the

vector potential at infinity are so-called Sommerfeld’s
conditions of radiation (see [2], page 509):

R2=r?+z? 5w Azo(l], %4— jkA:o(ij,(G)
R) ©OR R

where symbol O(1/R) denotes that A and 1/R are
infinitesimal of the same order at R — oo, but symbol
o(l/R) denotes that dA/&R + KA is infinitesimal of
higher order than 1/R at R — .

It can be easy verified that if the functions 13 (M),
I;(M), 17(M)are continuous in some closed region
V and, consequently, they are bounded in this region,

then the vector function A(M) in formula (4) satisfy

Sommerfeld’s conditions (5). Consequently, in this
case, formula (4) gives the solution to the problem (1),
(6) under the condition that the wvector function
¢(M) is prescribed.

In the Cartesian coordinate system, the unit vectors
€., € and €, are constant. Therefore, in this case,

X 1
according to formula (4), the each component of the
vector A is expressed in terms of a triple integral of a
corresponding component of the vector 1°¢ (i.e. A, in

terms of I;, A, in terms of I and so on). For

y
example,



~ —ikr. - ~
AAM)=%I§II§(M)WW. ™

and so on. However, in the all other orthogonal
curvilinear coordinate systems, the unit vectors are
already the functions of coordinates. For example, in
the system of cylindrical polar coordinates (r,¢,z),

vector 1¢(M) has the form
FE(M)=15(M)§, +15(M)E, + 15 (M)8,, ©)

and the only unit vector €, is constant. In this case, the
equality
~ .~ exp(-jkr,-)
[ 1 vye, vy ===
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dv =

~ exp(=jkr, -) ~ ~
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and the similar equality for I;(I\ﬁ) ‘€, (M) are wrong.

Consequently, in this case, the components A (M)

and A, (M) has the form of a triple integral of some

linear combination of components If(l\?i) and
I;(I\ﬁ). In authors’ papers [3] and [4] problem (1), (6)

has been solved by using the cylindrical polar
coordinates as follows. At first, triple integral (7) is
transformed into the single integral in the Cartesian
coordinates and only, at second, the passing to the
cylindrical polar coordinates is performed in the
solution obtained.

In this paper, the integral representation of the
solution to the vector Helmholtz equation (4) is
obtained in the system of cylindrical polar, spherical
and also arbitrary orthogonal curvilinear coordinates.

Components of the vector A(M) are expressed in
terms of triple integrals of the linear combinations of
the components of the current vector density 1°(M).

2 Integral Representation in the System

of Cylindrical Polar Coordinates

In the system of cylindrical polar coordinates (r,¢,2),

vectors A(M)=A(r,p,z) and 1°(M)=1°%(F,p,7)

have the form

AM) = A (M)E, (M) +A,(M)E, (M) +A,(M)§,,
(10)

FE(M)=17(M)€ (M) +15(M)E, (M) + 7 (M)§,,
(11)

the components A, (M), A, (M) can be expressed in

terms of the components A, (M), A, (M) as

A=A cosp+A sing, (12)
A, =-A;sinp+ A cosp. (13)

The components IE(M), I§(I\ﬁ) can be expressed in
terms of the components If(M) and I;(M):

15(M)=1£(M)cosg —12(M)sing, (14)
Iy(M)=17(M)sing +1;(M)cos¢. (15)

It follows from (4) that

HoH e N T\ AT
AX(M):;—”UJIX(M)CD(M,M)dV, (16)
Ay(M)=/Z°7;’m|§(|\Z)q>(|v|,|\'/|")d\7, (17)
where
@(M,M):w, (18)

and the distance, r, . , between the points M and M

is defined by formula (5). It follows from (5) by
substituting

X=Trcose, y=rsing, z=1z;
X=Trcosg, y=rsing, Z=2 (19)

that

M =\/r2+F2—2chos(¢)—§)+(z—'i)2 . (20)

It follows from (12) by substituting expression (16) for
A, (M) and expression (17) for A (M) that

Ar(M):%IJI 1E(M)D(M,M)dV -cosp +

Hol [[[ 1o ST
2 jvﬁly(M)cD(M,M)dv sing.  (21)
Substituting the expression (14) for If(hﬁ) and (15)
for 12(M) into (21) yields
Ar(M)z%IJJ.[If(I\Z)COSEE—I;(M)sin&]x
xd)(M,M)dV-COSqo+
HoH E(NA Y in o e (N ~
+$J‘\ﬂ[lr(M)sm(/9+I(p(M)COSgo]x
x®(M,M)dV -sing. (22)

The final expression for the component A (M) can be

easily obtained from (22) by performing some
elementary transforms, and it has the form

AF(M)=%jvﬂ[lf(l\ﬁ)cos(qo—a)+



+1E(M)sin(p - )] (M, M)V, (23)
where
dV =Fdrdg dz . (24)

The expression for the component A (M) is obtained

by performing the similar transforms and by using
formulae (13) for A,(M), (16) for A, (M), (17) for

A, (M), (14) for 13(M) and (15) for 15(M). It has

the form

A(,,(M)=%jvjj[lf(ﬂ)sin(¢>—’qﬁ)+
+1E(M)cos(p - )] @M, M)dV . (25)

The component A, (M) has the same form as in the
Cartesian coordinates:

AZ(M)=%IJI|§(M)®(M,M)dV. (26)

Thus, formulae (10), (23), (25) and (26) give the
integral representation of the solution to the vector
Helmholtz equation (4) in the cylindrical polar
coordinates.

3 Integral Representation in the System

of Spherical Coordinates
In the system of spherical coordinates (p, 6, @)

vectors A(M)=A(p,0,9) and 15(M)=1°%(5.0.%)
have the form

AM) =A (M)E,(M)+A, (M)E,(M) +

+A,(M)E, (M), (27)
(M) =15(M)E,(M)+15(M)E, (M) +
+1E(M)E, (M). (28)

The components A (M), A,(M) and A,(M) can be

expressed in terms of the components A,(M),
A,(M) and A,(M):

A,(M)=[A,(M)cosp + A, (M)sinp]sind +

+A,(M)cosé, (29)
Ay (M) =[A,(M)cosp + A, (M)singp]cosd —

-A,(M)sing, (30)
A,(M)=-A,(M)sing + A, (M)cosp, (31)

and the components 15(M), I‘;(M) and 15(M) can

be expressed in terms of the components Iz(hﬁ) :

Ij,(l\ﬁ) and |g(|\7|') (see [5], page 582):

Ij(M)z I;(M)sin§c05&+ Ig(l\ﬁ)cosécos&—

~1E(M)sing, (32)
Ij(l\ﬁ)z I;(M)sinésing5+ I§(I\ﬁ)cos§sin¢+

+ I;(M)cos& : (33)
1E(M)=12(M)cosd —1£(M)sind . (34)

It follows from formula (4) that
A(M) 15 (M)
Mol e 13 vivvi
A, (M) [= 407; m IZ(M) F(M,M)dV,  (35)
A, (M) VoL (M)

where

~_ exp(—jkr,, -
F(M,M)=—p( J MM), (36)
M
and the distance, e between the points M and M
is defined by formula (5). It follows from (5) by

substituting

X = psin@dcosep, y=psindsing, z= pcosd,

X =psindcosp, y=psindsing, 7 =pcosd (37)
that

M = \/p2 +p2 —2pp[sindsin G cos(p — p) +

+c0s0cosd ]. (38)
It follows from (29) by substituting (35) that

A,(M)=

IL;(): JJJ. 15(M)F(M,M)dV -cosgsin @ +

HoH e /nT iy .
" an I\.!..[IV(M)F(MaM)dV singsing +

+%J’{/”' 1$(M)F(M,M)dV -cos6. (39)

The final expression for the component A, (M) is

obtained by substituting expressions (32) - (34) of the
components of 1°(M) into (39) and by performing
some elementary transforms, and it has the form

A, (M) =%IJI{IE(I\])[SM sind cos(p— ) +

+cos€cos§]+

+ Ig(M)[sin 0cosd cos(¢ — @) — cos @ sin 0]+

+1E(M)sindsin(p - $)}F(M,M)dV , (40)
where



dV = p2sin0 dpdo dg . (41)

By performing the similar transforms for the
components A,(M) and A, (M), the final expression

for these components has the form
A, (M) =Mj”{l;(M)[sinécosecos(ga—(;)—
A v
—cosd sin 01+
+ Ig(l\ﬁ)[cosé cos & cos(p — @) +sin 0 sin 0] +

+18(M)cosdsin(p — )} F(M,M)dV , (42)

A(/,(M)=—/Z"/’ruﬂ_[{lep(l\ﬁ)sinésin(go—g})+
+I§(|\ﬁ)cos§sin(¢—&)—
~12(M)cos(p— @)} F(M,M)dV . (43)

Thus, formulae (27), (40), (42) and (43) give the
integral representation of the solution to the vector
Helmholtz equation (4) in the spherical coordinates.

4 Integral Representation in the System
of Arbitrary Orthogonal Curvilinear

Coordinates
Let the system of arbitrary orthogonal curvilinear
coordinates (q,,qd,,0d5) be given by the functions

X=X(0;,9,,93), Y=Y(0;,9;,03),

2=12(9;,9;,,9;) (44)
and, respectively,

X =x(0,05,03), Y =Y(0;,0,,03),

Z=12(0;,0,,03) - (45)

Let &, & , &
1

0 be the units vectors of this
2 Js

coordinate system. Then vectors A(M) and fe(M)
have the form

AM)=A, (M)E, (M)+A, (M)E, (M)+

+ A, (M)E, (M), (46)
TE(M) =12 (M), (M)+1¢ (M)E, (M) +
+18 (M)E, (M). (47)

The components A, (M), A, (M), A, (M) can be

expressed in terms of the components A,(M),
Ay(M), A, (M):

_ X o .
Ay, (M) =27 (M){A(M) A M)

J

+A (M)—} =123, (48)
09

and the components Ij(l\ﬁ), I§(I\Z), If(M) can be
expressed in terms of the components Igl(l\ﬁ),

g, (M), g, (M) (see [5], page 561):

1 oX

15 (M) = ZI (M) = &, (49)
k
HOE Z' ()i (50)
k
~ 1 oz
1EM)=S"18 (M)—=——, 51
(M) kZ O (50)

where H, =H,(q;,9,,0;), H, =H,(G;,0,,7;) are
the Lame coefficients of the prescribed coordinate
system (see [5] with the notation that H, =h,*).

It follows from formula (4) that

A (M) 15 (M)
A, (M) =’;°;’m 15(M) [G(M,M)dV ,  (52)
A, (M) voLIz(M)

where
~_ exp(—jkr,, -
G(M,M)zM, (53)
M

and the distance, r, . , between the points M and M
is defined by formula (5), where x,y,z and X,y,Z
are the functions of q,,9,,9; and  0;,0,,0s,
respectively, and they are given by formulae (44),
(45).

It follows from (48), at first, by substituting (49)-
(51) into (52), and, at second, by substituting the new
obtained form of (52) into (48), that

/UO/U
AR ) (M)m = H (M) L)
X x O oy &
an aqj an aq; 5qk aq;
xG(M,M)dV , j=12,3, (54)
where
dV = H, (M)H, (M)H, (M)dd,dd,dd, . (55)

Formulae (46) and (54) give the integral representation
of the solution to the vector Helmholtz equation (4) in



the system of arbitrary orthogonal curvilinear
coordinates.

The integral representation of the Helmholtz
equation (4) can be obtained for any orthogonal
coordinate system by substituting the Lame
coefficients of these coordinate system into equations
(54) and (55). For example, in the system of
cylindrical polar coordinates (r,¢,z), it follows from

(54) by substituting

q,=r, =9, 43=2, 61;1:?,
H, =1, H,=r, Hy=1, H, =1,
G(M,M)=d(M,M),

and by using formula (19) that at j=1

Ar(M)z%I\J;j[If(l\ﬁ)(cos&cos;wrsing}sin Q) +

+I;(M)(—sing“o'COSgoJrcos&singo)]x
xd(M,M)dV . (56)
Formula (56) coincides with previously obtained

formula (23). By similar way, formulae (25) of
A,(M) and (26) of A,(M) can be obtained from (54)

by substituting j=2 and j=3, respectively.
In the system of spherical coordinates ( p,6,¢),
formulae (40), (42) and (43) can be obtained from (54)

by substituting

ql:pl q2:el q3:(01 alzﬁy
H, =1, H,=p, H;=psing,
H,=psingd , G(M,M)=F(M,M)

d,
H,

Il
[

and by using formula (37).

5 Conclusion
The integral representation of the solution to the vector

Helmholtz equation for the vector potential A= A(M)

has been obtained in the system of cylindrical polar
and spherical coordinates. In the cylindrical polar
coordinate system the radial and axial components of
the vector potential, A (M) and A, (M), are

expressed in terms of a triple integral of linear
combination of the radial and axial components of
current vector density. The similar results have been
obtained for the system of spherical coordinates.

The integral representation of the solution to the
vector Helmholtz equation has been also obtained for
the system of arbitrary orthogonal curvilinear
coordinates. The integral representation of the solution
to the vector Helmholtz equation can be easily found
for any orthogonal curvilinear coordinate system by

only substituting the Lame coefficients of this
coordinate system into the representation obtained.
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