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Abstract: In the integral representation of the solution to the vector Helmholtz equation known in literature the 
electromagnetic field vector potential is expressed in terms of a triple integral of multiplication of current density 
vector and fundamental solution of the scalar Helmholtz equation. This representation has the simplest form in the 
rectangular coordinate system, in which the unit vectors zyx eee


,,  do not depend on coordinates. In the present paper 

the integral representation of the solution to the vector Helmholtz equation is obtained for the system of arbitrary 
orthogonal curvilinear coordinates, in which the unit vectors 321 ,, qqq eee

  are prescribed functions of coordinates. As 
particular cases of the representation obtained, the integral representations of the solution to the vector Helmholtz 
equation are found for the systems of cylindrical and spherical coordinates. 
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1 Introduction 
The Helmholtz equation for the vector potential used 
in electrodynamics has the form 
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where 2
00

2 εωµεµ=k , )(MII ee 
=  is the external 

current vector density; 0ε  and 0µ  are the electric and 
magnetic constants, respectively; ε  and µ  are the 
relative permittivity and relative magnetic 
permeability of the medium, respectively. 

Vectors )(MA


 and )(MI e  in the system of 
Cartesian coordinates has the form 
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Consider the integral representation of Helmholtz 
equation in the vector form for a point ),,( zyxM  
situated in the region, where the external current 
vector 0=eI


 (see [1], page 322): 
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where the integration is performed over the points 
VzyxM ∈)~,~,~(~ , in which 0≠eI


; ,1=µ 1=ε  since 

the wire is situated in free space, MMr ~  is the distance 
between the points ),,( zyxM  and )~,~,~( zyxM :  
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Conditions for all the components, zyx AAA ,, , of the 
vector potential at infinity are so-called Sommerfeld’s 
conditions of radiation (see [2], page 509): 
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where symbol ( )RO /1  denotes that A  and R1  are 
infinitesimal of the same order at ∞→R , but symbol 
( )Ro /1  denotes that jkARA +∂∂ /  is infinitesimal of 

higher order than R1  at ∞→R .  
It can be easy verified that if the functions )(MI e

x , 
)(MI e

y , )(MI e
z are continuous in some closed region 

V  and, consequently, they are bounded in this region, 
then the vector function )(MA


 in formula (4) satisfy 

Sommerfeld’s conditions (5). Consequently, in this 
case, formula (4) gives the solution to the problem (1), 
(6) under the condition that the vector function 

)(MI e  is prescribed.  
In the Cartesian coordinate system, the unit vectors 

xe , ye  and ze  are constant. Therefore, in this case, 
according to formula (4), the each component of the 
vector A


 is expressed in terms of a triple integral of a 

corresponding component of the vector eI


 (i.e. xA  in 
terms of e

xI , yA  in terms of e
yI  and so on). For 

example, 



Vd
r

jkr
MIMA

MM

MM

V

e
xx

~)exp(
)~(

4
)(

~

~0 −
= ∫∫∫π

µµ
,           (7) 

and so on. However, in the all other orthogonal 
curvilinear coordinate systems, the unit vectors are 
already the functions of coordinates. For example, in 
the system of cylindrical polar coordinates ),,( zr ϕ , 

vector )~(MI e  has the form 
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and the only unit vector ze  is constant. In this case, the 
equality 
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and the similar equality for )~()~( MeMI e
ϕϕ

⋅  are wrong. 

Consequently, in this case, the components )(MAr  
and )(MAϕ  has the form of a triple integral of some 

linear combination of components )~(MI e
r  and 

)~(MI e
ϕ . In authors’ papers [3] and [4] problem (1), (6) 

has been solved by using the cylindrical polar 
coordinates as follows. At first, triple integral (7) is 
transformed into the single integral in the Cartesian 
coordinates and only, at second, the passing to the 
cylindrical polar coordinates is performed in the 
solution obtained.  

In this paper, the integral representation of the 
solution to the vector Helmholtz equation (4) is 
obtained in the system of cylindrical polar, spherical 
and also arbitrary orthogonal curvilinear coordinates. 
Components of the vector )(MA


 are expressed in 

terms of triple integrals of the linear combinations of 
the components of the current vector density )~(MI e . 

  
 

2 Integral Representation in the System 
of Cylindrical Polar Coordinates  
In the system of cylindrical polar coordinates ( zr ,,ϕ ), 
vectors ),,()( zrAMA ϕ


=  and )~,~,~()~( zrIMI ee ϕ


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have the form 

zzrr eMAMeMAMeMAMA 
)()()()()()( ++= ϕϕ , 

                                                                                 (10) 

z
e
z

e
r

e
r

e eMIMeMIMeMIMI 
)~()~()~()~()~()~( ++= ϕϕ ,                                                                       

                                                                                 (11) 
the components )(MAr , )(MAϕ  can be expressed in 
terms of the components )(MAx , )(MAy  as   
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The components )~(MI e
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y  can be expressed in 
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and the distance, MMr ~ , between the points M  and M~  
is defined by formula (5). It follows from (5) by 
substituting  

;,sin,cos zzryrx === ϕϕ  
zzryrx ~~,~sin~~,cos~~ === ϕϕ                                (19) 

that 
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It follows from (12) by substituting expression (16) for 
)(MAx  and expression (17) for )(MAy  that 
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Substituting the expression (14) for )~(MI e
x  and (15) 

for )~(MI e
y  into (21) yields    
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The final expression for the component )(MAr can be 
easily obtained from (22) by performing some 
elementary transforms, and it has the form 
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where  
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The expression for the component )(MAϕ  is obtained 
by performing the similar transforms and by using 
formulae (13) for )(MAϕ , (16) for )(MAx , (17) for 

)(MAy , (14) for )~(MI e
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The component )(MAz  has the same form as in the 
Cartesian coordinates: 
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Thus, formulae (10), (23), (25) and (26) give the 
integral representation of the solution to the vector 
Helmholtz equation (4) in the cylindrical polar 
coordinates. 
 
 
3 Integral Representation in the System 
of Spherical Coordinates 
In the system of spherical coordinates ( ϕθρ ,, ) 
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

=  and )~,~,~()~( ϕθρee IMI


=  
have the form 

++= )()()()()( MeMAMeMAMA θθρρ


 

          )()( MeMA ϕϕ


+ ,                                          (27) 

++= )~()~()~()~()~( MeMIMeMIMI eee
θθρρ


 

           )~()~( MeMI e
ϕϕ


+ .                                          (28) 

The components )(MAρ , )(MAϕ  and )(MAθ  can be 

expressed in terms of the components )(MAx , 
)(MAy  and )(MAz :   

++= θϕϕρ sin]sin)(cos)([)( MAMAMA yx  

            θcos)(MAz+ ,                                            (29) 

−+= θϕϕθ cos]sin)(cos)([)( MAMAMA yx  
            θsin)(MAz− ,                                             (30) 

ϕϕϕ cos)(sin)()( MAMAMA yx +−= ,                 (31) 

and the components )~(MI e
x , )~(MI e

y  and )~(MI e
z  can 

be expressed in terms of the components )~(MI e
ρ ,  

)~(MI e
ϕ  and )~(MI e

θ  (see [5], page 582):  

 −+= ϕθϕθ θρ
~cos~cos)~(~cos~sin)~()~( MIMIMI eee

x  

           ϕϕ
~sin)~(MI e− ,                                            (32) 

++= ϕθϕθ θρ
~sin~cos)~(~sin~sin)~()~( MIMIMI eee

y  

            ϕϕ
~cos)~(MI e+ ,                                            (33) 

θθ θρ
~sin)~(~cos)~()~( MIMIMI eee

z −= .                    (34)                                                                                           

It follows from formula (4) that 
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and the distance, MMr ~ , between the points M  and M~  
is defined by formula (5). It follows from (5) by 
substituting  

θρϕθρϕθρ cos,sinsin,cossin === zyx ,  
θρϕθρϕθρ ~cos~~,~sin~sin~~,~cos~sin~~ === zyx   (37)                                                                        

that 
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The final expression for the component )(MAρ  is 
obtained by substituting expressions (32) - (34) of the 
components of )~(MI e  into (39) and by performing 
some elementary transforms, and it has the form 
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By performing the similar transforms for the 
components )(MAθ  and )(MAϕ , the final expression 
for these components has the form 
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Thus, formulae (27), (40), (42) and (43) give the 
integral representation of the solution to the vector 
Helmholtz equation (4) in the spherical coordinates. 
 
 
4 Integral Representation in the System 
of Arbitrary Orthogonal Curvilinear 
Coordinates 
Let the system of arbitrary orthogonal curvilinear 
coordinates ( 321 ,, qqq ) be given by the functions 

),,( 321 qqqxx = , ),,( 321 qqqyy = ,  
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1

MI e
q , 

)~(
2

MI e
q , )~(

3
MI e

q  (see [5], page 561): 

kk k

e
q

e
x q

x
H

MIMI
k ~

~
~
1)~()~(

3

1 ∂
∂

=∑
=

,                                 (49) 

kk k

e
q

e
y q

y
H

MIMI
k ~

~
~
1)~()~(

3

1 ∂
∂

=∑
=

,                                  (50) 

kk k

e
q

e
z q

z
H

MIMI
k ~

~
~
1)~()~(

3

1 ∂
∂

=∑
=

,                                 (51) 

where ),,( 321 qqqHH kk = , )~,~,~(~
321 qqqHH kk =  are 

the Lame coefficients of the prescribed coordinate 
system (see [5] with the notation that 1−= kk hH ).  

It follows from formula (4) that 
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and the distance, MMr ~ , between the points M  and M~  
is defined by formula (5), where zyx ,,  and zyx ~,~,~  
are the functions of 321 ,, qqq  and  321

~,~,~ qqq , 
respectively, and they are given by formulae (44), 
(45). 

It follows from (48), at first, by substituting (49)-
(51) into (52), and, at second, by substituting the new 
obtained form of (52) into (48), that 
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Formulae (46) and (54) give the integral representation 
of the solution to the vector Helmholtz equation (4) in 



the system of arbitrary orthogonal curvilinear 
coordinates.  

The integral representation of the Helmholtz 
equation (4) can be obtained for any orthogonal 
coordinate system by substituting the Lame 
coefficients of these coordinate system into equations 
(54) and (55). For example, in the system of 
cylindrical polar coordinates ( zr ,,ϕ ), it follows from 
(54) by substituting  
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Formula (56) coincides with previously obtained 
formula (23). By similar way, formulae (25) of 

)(MAϕ  and (26) of )(MAz  can be obtained from (54) 
by substituting 2=j  and 3=j , respectively.  

In the system of spherical coordinates ( ϕθρ ,, ), 
formulae (40), (42) and (43) can be obtained from (54) 
by substituting  

ρ=1q , θ=2q , ϕ=3q , ρ~~
1 =q , θ~~

2 =q , ϕ~~
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11 =H , ρ=2H , θρ sin3 =H , 1~
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and by using formula (37). 
 
 
5 Conclusion 
The integral representation of the solution to the vector 
Helmholtz equation for the vector potential )(MAA


=  

has been obtained in the system of cylindrical polar 
and spherical coordinates. In the cylindrical polar 
coordinate system the radial and axial components of 
the vector potential, )(MAρ  and )(MAϕ , are 
expressed in terms of a triple integral of linear 
combination of the radial and axial components of 
current vector density. The similar results have been 
obtained for the system of spherical coordinates. 

The integral representation of the solution to the 
vector Helmholtz equation has been also obtained for 
the system of arbitrary orthogonal curvilinear 
coordinates. The integral representation of the solution 
to the vector Helmholtz equation can be easily found 
for any orthogonal curvilinear coordinate system by 

only substituting the Lame coefficients of this 
coordinate system into the representation obtained. 
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