A NEW COPPER-CATALYZED PATHWAY TO BENZO AND PYRIDYL FUSED IMIDAZO-, TRIAZOLO- AND PYRIMIDO-THIAZINES

Edgars Abele, Tatjana Beresneva, Sergey Belyakov, Juris Popelis, Kira Rubina

Latvian Institute of Organic Synthesis, 21 Aizkraukles Street, Riga, LV-1006, Latvia,
E-mail: abele@osi.lv

ABSTRACT:
A simple one flask method for the selective preparation of benzo and pyridyl fused imidazo[2,1-b][1,3]thiazines, [1,2,4]triazolo[5,1-b][1,3]thiazines, and pyrimido[2,1-b][1,3]thiazin-6-ones from corresponding thiols and o-halobenzyl bromides or 2-bromo-3-chloromethylpyridine in the system solid KOH / CuI / TBAB / DMF has been developed.

Keywords: copper catalysis, imidazo[2,1-b][1,3]thiazines, [1,2,4]triazolo[5,1-b][1,3]thiazines, and pyrimido[2,1-b][1,3]thiazin-6-ones

INTRODUCTION
Imidazo-thiazines and pyrimido-thiazines are of great interest as biologically active compounds. Common methods for the preparation of imidazo-thiazine and pyrimido-thiazine ring systems were described in reviews. Among known methods for the preparation of imidazo[1,2-a][3,1]benzothiazine it is necessary to mention the thermal cyclization of 2-aminobenzothiazine pyruvate salts. 2-[(Pentafluorophenyl)methylthio]benzimidazole undergoes cyclization to tetrafluorobenzimidazobenzothiazine in the presence of NaH in THF. 5H-BenzO[4,5][1,3]thiazino[2,3-b]quinazolin-12-one was obtained from 2-(2-hydroxymethylphenyl)-2-mercapto-3H-quinazolin-4-one in the presence of dry HCl / EtOH.

However, there is no simple and general procedure for the synthesis of benzo and pyridyl fused imidazo[2,1-b][1,3]thiazines, [1,2,4]triazolo[5,1-b][1,3]thiazines, and pyrimido[2,1-b][1,3]thiazin-6-ones.

The high activity of copper(0), copper(I) or copper(II) catalysts in N-arylation of imidazole and related heterocycles were presented in literature. Besides this the combination of alkali bases with TBAB as phase transfer catalyst were demonstrated in some recent articles. Recently synthesis of substituted imidazo[1,2-a][3,1]benzothiazines by Cu-catalyzed reaction in the presence of proline ligand was also described.
RESULTS AND DISCUSSION

Herein we report a novel and simple copper-catalyzed ligandless method for the preparation of imidazo[2,1-b][1,3]thiazines 1a, 2a,b,c, 3a,a’, [1,2,4]triazolo[5,1-b][1,3]thiazines 4a and 5a, and pyrimido[2,1-b][1,3]thiazin-6-ones 6a-8a from corresponding thiols o-halobenzyl bromides or 2-bromo-3-chloromethylpyridine (Scheme 1). Our previous experiments showed that in the synthesis of all above heterocycles the best base was solid KOH. Synthesis of compounds 1c-8c, 2d,e, 3c‘ was carried out using two step one flask method: the highly selective S-alkylation of thiols 1-8 in the presence of KOH, followed by Cu(I)-catalyzed cyclization of (2-halophenylsulfanyl)hetarene intermediates.

Thus, the treatment of 2-mercaptoimidazole (1) and 2-mercaptopbenzimidazole (2) with 2-iodobenzyl bromide, solid KOH (1 equivalent) in DMF, and then with solid KOH (3 equivalents) and Cul (20 mol. %) afforded proposed products in 68 and 74% yields, correspondingly (Table 1, entries 1 and 2). Interestingly, that cyclization of compound 2 with 2-bromomethyl-1-chloro-3-fluorobenzene led to chlorine containing product 2b in 29% yield (entry 3). Fluorine containing 2b’ product was detected only in trace amounts by LC-MS spectra. It means that substitution of fluorine in the Cu-catalyzed cyclization was preferable under studied conditions. Reaction of thiol 2 with 2-bromo-3-chloromethylpyridine in the system solid KOH / Cul / TBAB / DMF leads to fused thiopyrano[4,3-b]pyridine 2c in 81% yield (entry 4). Treatment of 5-methyl-2-mercaptopbenzimidazole 3 with 2-iodobenzyl bromide afforded 1:1 mixture of unseparable isomeric products 3a and 3a’ in overall yield 90% (entry 5).

The interaction of triazole thiols 4 and 5 with 2-iodobenzyl bromide leads to products 4a and 5a in 70 and 85% yield, correspondingly (entries 6, 7). Structure of products 4a and 5a were assigned by NOESY experiments to clarify the regioselectivity of the process. In the 2D NOESY spectra of both compounds cross correlation peaks were detected (Scheme 2). Beside this no correlation peaks were found between pyridine and benzene rings in compound 5a. It clearly indicates the correct structure of products 4a and 5a illustrated in Scheme 2.
Scheme 2

Figure 1. ORTEP molecular structure of the compound 2a.
Structure of compound 2a was confirmed by X-Ray structural data. Figure 1 illustrates a view of the molecule 2a, showing the thermal ellipsoids and the atom-numbering scheme followed in the text. The cycle of S(10)–C(11)–C(12)–C(17)–N(3)–C(2) is characterized by twist-conformation; all the other cycles in the molecule are planar. The molecular conformation apparently cannot be planar due to repulsion of the hydrogen atoms at C(4) and C(16). Therefore, the molecule has a helical conformation: the atoms are arranged approximately on the surface of a helicoids, the parameter (step) of it is equal 0.96 Å. Thus, molecules of 2a are chiral even though there are no asymmetric atoms. The crystal structure of 2a has both enantiomers related to each other by centers of inversion and glide planes. Projection of the crystal structure of 2a viewed along the small lattice parameter a is shown in Figure 2.

The above procedure was successfully used in the synthesis of substituted pyrimido[2,1-b][1,3]thiazin-6-ones 6a-8a from corresponding thiols 6-8. Products 6a-8a were isolated in 32-49% yield (Table 1, entries 8-10).

In summary, unexpected high selectively of triazole containing products ([1,2,4]triazolo[5,1-b][1,3]thiazines 4a and 5a) was obtained using the above method.
Table 1. Cu-catalyzed synthesis of fused thiazines 1a-8a, 2b, 2c in the system o-halobenzyl bromides / solid KOH / CuI / TBAB / DMF at 120°C.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Starting thiol</th>
<th>Halide</th>
<th>Products</th>
<th>Reaction time, h</th>
<th>Yield, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>68</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>74</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td> + </td>
<td>17</td>
<td>29 (2b) traces (2b')</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td>81</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td>45 (3a) 45 (3a')</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

EXPERIMENTAL SECTION

1H and 13C NMR spectra were recorded on a Varian Mercury BB 400 MHz in CDCl$_3$ using HMDS as internal standard. LC-MS spectra were recorded on Alliance Waters 2695 instrument and Waters 3100 mass detector. HR-MS spectra were performed on Micromass Q-TOF Micro quadrupole-time of flight high resolution mass spectrometer. Leucine enkephalin was used as internal lock mass for accurate mass calculation. Thiols, o-halobenzyl bromides, Bu$_4$NBr and Cul (Acros and Aldrich) were used without additional purification.

Typical procedure for the synthesis of fused thiaazines 1a-8a, 2b,c, 3a'. Solid KOH (0.097 g, 1.5 mmol) was added to the solution of thiols 1-8 (1.5 mmol) and o-halobenzyl halides (1.5 mmol) in dry DMF (10 ml) in a glass reactor (50 ml) under argon. After 1 h stirring at 100 °C solid KOH (0.29 g, 4.5 mmol), Cul (0.057g, 0.3 mmol) and TBAB (0.097 g, 0.3 mmol) were added. The reaction mixture was stirred at 120°C (TLC-control, see Table 1) under argon. The solvent was removed under reduced pressure and crude residue was chromatographed on silica
using hexane : ethyl acetate (from 4:1 to 0:1) or DCM : EtOH in different mixtures as eluent. Spectroscopic data of obtained compounds were as followed.

Imidazo[1,2-a][3,1]benzothiazine (1a); Oil; LC-MS, 189 (M⁺+1); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 4.01 (s, 2H, SCH₂), 7.14 and 7.49 (both d, total 2H, J = 3.0Hz, imidazole protons), 7.22 (m, 1H, H-7), 7.30 (m, 1H, H-9), 7.33 (m, 1H, H-6), 7.39 (m, 1H, H-8); ¹³C NMR (100.58 MHz, CDCl₃) δ (ppm): 29.93 (SCH₂), 115.91, 117.76, 124.14, 126.03, 128.08, 128.89, 129.92, 134.90, 140.44.

Benzimidazo[1,2-a][3,1]benzothiazine (2a); M.p. 125°C; LC-MS, 240 (M⁺+2); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 4.05 (s, 2H, SCH₂), 7.29 (m, 1H, H-3), 7.30-7.35 (m, 2H, H-9 and H-10), 7.42 (m, 1H, H-H-4), 7.48 (m, 1H, H-2), 7.76 (m, 1H, H-8), 8.73 (m, 1H, H-11), 7.69 (m, 1H, H-1); ¹³C NMR (100.58 MHz, CDCl₃) δ (ppm): 30.43 (CH₂), 111.36, 118.18, 119.51, 123.00, 123.42, 125.75, 125.83, 128.10, 128.91, 132.61, 135.45, 143.92, 150.64. Found, m/z (EI): 239.0650 [M+H]⁺; C₁₄H₁₁N₅S. Calculated, m/z: 239.0643.

4-Chlorobenzimidazo[1,2-a][3,1]benzothiazine (2b); M.p. 112°C; LC-MS, 273 (M⁺+1); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 4.25 (s, 2H, SCH₂), 7.30-7.43 and 7.7-7.8 (both m, total 7H, aromatic); ¹³C NMR (100.58 MHz, CDCl₃) δ (ppm): 26.82 (CH₂), 111.35, 116.82, 119.68, 123.23, 123.77, 126.49, 126.76, 129.19, 132.64, 132.94, 136.80, 144.05, 150.61. Found, m/z (EI): 273.0245 [M+H]⁺. C₁₄H₁₀ClN₅S. Calculated, m/z: 273.0253.

5H-6-Thia-1,7,11b-triazabenzo[c]fluorene (2c); M.p. 184-185°C; LC-MS, 240 (M⁺+1); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 4.11 (s, 2H, CH₂), 7.21 (m, 1H, H-3), 7.31 (m, 1H, H-10), 7.34 (m, 1H, H-9), 7.69 (m, 1H, H-8), 7.70 (m, 1H, H-4), 8.49 (m, 1H, H-11), 8.51 (m, 1H, H-2); ¹³C NMR (100.58 MHz, CDCl₃) δ (ppm): 28.94 (CH₂), 114.93, 118.55, 118.76, 120.80, 123.58, 123.79, 132.95, 136.13, 143.51, 147.80, 148.77, 148.98. Found, m/z (EI): 240.0607 [M+H]⁺. C₁₃H₁₀N₃S. Calculated, m/z: 240.0595.

10-Methylbenzoimidazo[1,2-a][3,1]benzothiazine and 9-methylbenzoimidazo[1,2-a][3,1]benzothiazine (3a, 3a’); LC-MS, 254 (M⁺+1); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 2.49 (s, 3H, Me), 2.53 (s, 3H, Me), 4.03 (s, 2H, SCH₂), 7.12-7.16, 7.25-7.30, 7.39-7.53, 7.61-7.70, 7.82-7.87 (all m, total 7H, aromatic).

[1,2,4]Triazolo[1,5-a][3,1]benzothiazine (4a); M.p. 120-121°C; LC-MS, 190 (M⁺+1); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 4.13 (s, 2H, SCH₂), 7.27, 7.29, 7.44 and 7.83 (all m, total 4H, aromatic H-6, H-7, H-8 and H-9), 8.00 (s, 1H, triazole proton); ¹³C NMR (100.58 MHz, CDCl₃) δ (ppm): 29.24 (SCH₂), 118.01 (C-9), 121.60 (C-5a), 127.11 (C-7), 127.62 (C-6), 129.30 (C-8), 134.60 (C-9a), 149.80 (C-3a), 151.89 (C-2). Found, m/z (EI): 190.0437 [M+H]⁺. C₁₀H₉N₅S. Calculated, m/z: 190.0439.

2-(3-Pyridyl)-[1,2,4]triazolo[1,5-a][3,1]benzothiazine (5a); M.p. 154-155°C; LC-MS, 267 (M⁺+1); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 4.16 (s, 2H, SCH₂), 7.29, 7.30, 7.45, 7.91 (all m, total 4H, H-7, H-6, H-8 and H-9), 7.37, 8.41, 8.65 and 9.39 (all m, total 4H, pyridyl H-5’, H-4’, H-6’ and H-2’); ¹³C NMR (100.58 MHz, CDCl₃) δ (ppm): 29.21 (SCH₂), 118.04 (C-9), 121.42 (C-9), 121.42 (C-5a), 123.42 (C-5’), 126.29 (C-3’), 127.17 (C-7), 127.67 (C-6), 129.38 (C-8), 133.76 (C-4’), 134.56 (C-9a), 148.04 (C-2’), 150.51 (C-6’), 150.83 (C-3a), 160.03 (C-2). Found, m/z (EI): 267.0703 [M+H]⁺. C₁₄H₁₀N₄S. Calculated, m/z: 267.0704.
9H-10-Thia-1,4a-diazaphenanthren-4-one (6a); M.p. 133-134°C; LC-MS, 217 (M⁺1); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 3.95 (s, 2H, SCH₂), 6.35 and 7.69 (both d, total 2H, J = 8 Hz, pyrimidine), 7.2-7.4 (m, 3H, H-6, H-7 and H-8), 7.92 (m, 1H, H-H-5); ¹³C NMR (100.58 MHz, CDCl₃) δ (ppm): 29.66 (CH₂), 113.00, 124.40, 126.71, 127.89, 128.11, 129.38, 134.70, 150.82, 161.51, 162.04.

1,10a-Dihydro-9H-10-thia-1,4a-diazaphenanthren-2,4-dione (7a); M.p. 110-112°C; LC-MS, 234 (M⁺1); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 4.20 (s, 2H, SCH₂), 5.33 (s, 1H, CH₂), 7.3-7.4 and 7.75-7.8 (both m, total 4H, aromatic), 11.8 (bs, 1H, NH); ¹³C NMR (100.58 MHz, CDCl₃) δ (ppm): 28.23 (SCH₂), 87.49 (COC₂H), 124.19, 126.71, 127.00, 129.59, 134.51, 162.24, 166.12. Found, m/z (EI): 217.0439 [M+H]⁺. C₁₁H₈N₂OS. Calculated, m/z: 217.0436.

5H-6-Thia-7,12a-diazabenzo[a]anthracen-12-one (8a); M.p. 161-162°C; LC-MS, 267 (M⁺1); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 3.94 (s, 2H, SCH₂), 7.2-7.8 and 8.2-8.3 (both m, total 8H, aromatic); ¹³C NMR (100.58 MHz, CDCl₃) δ (ppm): 29.95 (SCH₂), 121.15, 124.85, 126.07, 126.70, 127.37, 127.66, 127.82, 130.44, 135.02, 146.19, 153.65, 161.46, 167.71.

X-Ray crystallographic study of compound 2a. Diffraction data was collected at –80°C on a Bruker-Nonius KappaCCD diffractometer using graphite monochromated Mo-Kα radiation (λ = 0.71073 Å). The crystal structure of 2a was solved by direct methods¹⁶ and refined by full-matrix least squares¹⁷. All nonhydrogen atoms were refined in anisotropical approximation, all H-atoms were located from differencial Fourier map and refined by riding model. Crystal data for 2a: monoclinic; a = 3.9810(1), b = 26.1225(6), c = 10.5381(3) Å, β = 95.609(1)°; V = 1090.65(5) Å³, Z = 4, µ = 0.27 mm⁻¹; space group is P₂1/n. A total of 4631 reflection intensities were collected up to 2θ_{max} = 57°; for structure refinement 1707 independent reflections with I > 3σ(I) were used. The final R-factor is 0.047. For further details, see crystallographic data for 2a deposited with the Cambridge Crystallographic Data Centre as Supplementary Publication Number CCDC 806837. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK.

ACKNOWLEDGEMENTS
This work was supported by the project of ESF Foundation of Latvia (Project Nr. 2009/0197/1DP/1.1.1.2.0/09/APIA/V1AA/014).

REFERENCES

Received on March 8, 2012.