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Analytical solution of eddy current problems for
multilayer medium with varying electrical
conductivity and magnetic permeability

Valentina Koliskina, and Inta VVolodko

Abstract—Analytical solution of eddy current testing problem
for the case of a planar multilayer medium is constructed in the
present paper. It is assumed that the electrical conductivity and
magnetic permeability of each layer are exponential functions of the
vertical coordinate. The problem is solved by the method of the
Hankel integral transform. The resulting system of ordinary
differential equations is solved analytically using the modified Bessel
functions of the first and second kind. Two particular cases are
considered in detail: (a) a single-turn coil above a conducting half-
space with varying electrical conductivity and magnetic permeability
and (b) a single-turn coil above a two-layer medium where the
properties of the upper layer exponentially vary with depth while the
properties of the lower half-space are assumed to be constant. Results
of numerical calculations of the change in impedance are presented.

Keywords—eddy current testing, multilayer medium, electrical

conductivity, magnetic permeability.
I\/IATHEMATICAL models of eddy current testing problems
for planar multilayer medium with constant electrical
and magnetic properties are well-developed in the literature
[1]-[4]. Analytical solutions of direct problems for multilayer
medium are usually constructed by means of integral
transforms (such as Hankel or Fourier integral transforms).
The resulting system of ordinary differential equations in the
transformed space is then easily solved analytically if the
properties of each layer of the conducting medium are
constant.

Alternative approach is developed in [5] where the
magnetic field is assumed to be zero at a sufficiently large
distance from the axis of a coil. Such a method is known as
the TREE (TRuncated Eigenfuction Expansion) method in the
literature [4]. In this case analytical solutions to eddy current
problems can be constructed in the form of series expansions.

Since the range of applications of eddy current method is
quite wide it is not surprising to know that in some cases the

. INTRODUCTION

Manuscript received January 11, 2012: Revised version received XXX X,
XXXX.

V. Koliskina is with the Department of Engineering Mathematics of Riga
Technical University, Riga, Latvia LV 1048 (phone: 371-6708-9528; fax:
371-6708-9694; e-mail: v.koliskina@ gmail.com).

I. Volodko is with the Department of Engineering Mathematics of Riga
Technical University, Riga, Latvia LV 1048 (phone: 371-6708-9528; fax:
371-6708-9694; e-mail: inta.volodko@ rtu.Iv).

Issue 2, Volume 7, 2013

174

electrical conductivity and magnetic permeability of a
conducting medium can vary with respect to spatial
coordinates. It is shown in [6] and [7] that special type of
treatment of ferromagnetic metals (such as surface hardening)
can lead to the presence of a surface layer with reduced
magnetic permeability which varies exponentially with respect
to the wvertical coordinate. In order to optimize the
performance of gas turbines it is necessary to increase firing
temperatures. As a result, blades are usually protected from
the exposure to high temperatures by special layers containing
aluminium and chrome in special proportions [8]. The
depletion of aluminimum in this case leads to the variation of
electrical conductivity with respect to the vertical coordinate.

Hence, in order to adequately describe eddy current
problem in the above mentioned cases it is necessary to
develop mathematical models which take into account
variability of the electrical conductivity and/or magnetic
permeability with respect to one geometrical coordinate (the
vertical coordinate in the case of a planar multilayer medium).
Two approaches are usually used in such cases. One method is
based on the assumption that the variation of electrical and/or
magnetic properties of the medium can be represented by
piecewise constant functions. In other words, a conducting
layer with varying properties is divided into a large number of
relatively thin sub-layers where the electrical conductivity
and/or magnetic permeability of each sub-layer are constant.
This approach is used in [8], [9] for a rectangular coordinate
system, in [10] for a cylindrical coordinate system and in [11]
for a spherical coordinate system. Note that up to 50 layers are
used in [9] and up to 20 layers in [8]. In addition, it is
estimated in [8] that the use of many layers affects
computational efficiency by increasing computational time.

Alternative approach is based on the assumption that simple
model profiles (for example, in the form of exponential or
power functions) can be used in order to represent variability
of the properties of the conducting medium in one spatial
direction (see, for example, [3], [12]-[16]).

In the present paper we construct analytical solutions for
the case where a single-turn coil is located above a multilayer
conducting medium. It is assumed that the electrical
conductivity and magnetic permeability of each layer can vary
with respect to the vertical coordinate. In particular, the
electrical conductivity and magnetic permeability in each
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layer are assumed to be exponential functions of the vertical
coordinate. Some particular cases of the suggested solutions
are considered in detail. Results of humerical calculations are
presented.

Il. A COIL ABOVE A MULTILAYER MEDIUM WITH VARYING
PROPERTIES

Consider an air core coil located above a multilayer
medium (see Fig. 1). The outer and inner radii of the coil are
r,and I, respectively. The height of the coil is h, —h,,
where hjis the lift-off. The coil is located in free space
(region R;). The thickness of each conducting layer R;is

denoted by d;, 1=23,...,n—1.The bottom layer R, is
assumed to be infinite in the vertical direction.
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Fig. 1. An air core coil above a multilayer medium.

Each conducting layer R,,i = 2,3,...,nis characterized by

the two parameters: the electrical conductivity o©;and

magnetic permeability £ .

We consider a system of cylindrical polar coordinates
(r, o, z) centered at O, the Z -axis is directed upwards. The
coil is carrying alternating current of the form

= 1(r,h)e’”¢,, )

where I, <r<r,,h <h<h,, wis the frequency and

éw is the unit vector in the ¢ —direction. In this case it is

natural to assume that the vector potential A, in each region
R,i=12,..,
form

Nhas only one non-zero component of the
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A =A(r,2)e's,. @

We assume that the electrical conductivity o;and magnetic
permeability 1 in each region R, depends on the vertical

coordinate. More precisely, o;and g;are modeled by the
following relations

i = popy exple;z), o = o) exp(p2), 3)
i=23,..n,

where £z, is the magnetic constant and «;, f;, 1" , o are
constants.

I11. A SINGLE-TURN COIL ABOVE A MULTILAYER MEDIUM
The first step in solving the problem is to find the solution
for the case where a single-turn coil of radius I is located at

distance h above a conducting multilayer medium (see Fig.
2).

i Rilu1=1,01=0)
:; dy 9 Rz(ﬂz 02)
‘ /////// /////
—lﬂn—l O'n 1)

W

Fig. 2. A single-turn coil above a multilayer medium.

Using the Maxwell’s equations we obtain the following
system of equations for the amplitudes A, (r, z) of the vector

potential in each region R,,i=12,...

8D:

, N (see, for example,
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O°A L10A AL O°A
or? r or r2 oz? 4)
=~ 5(r —1,)5(z— h),
A 10A A A
a’ ror o
1 dg(z) oA
_— )i, (2)A =0, 5
TG & a jo (D) i (D) A (5)
i=23,...,n,
where &(X)is the Dirac delta-function.
Using (3) we rewrite equations (5) in the form
°A J1oA A °A
or? T v oz?
- B a;Ai_ juoo! 1" expl(e; + B;)z]1A =0, (6)
i=23,..,n
The boundary conditions are
0 l 0
Al Ao o= tle O
1
A=Al
T NI B T T W et
foor T oo e
®)
where

The following conditions hold at infinity:

A, %%O asr—ow,i=12,..

9
or ©
A —>0as z—> 4o, A, > 0as z—> —o. (10
Applying the Hankel integral transform of the form
AL 2)=[A (2, (Andr, i=12..,n @1
0
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to problem (4), (6)-(10) we obtain

d2A ~
dzél Al :_:uOIrCJl(ﬂ“rc)é‘(Z_h)! (12)
d2A
TV
— jou,p o] exp[(ai +/)7]A =0, (13)
i=23..,n,
~ d l dA
A o= A oo All Lo
Hy dz
Al s=Aul_g,
Aidil - _éﬁl __4 i=273!")n_1!
g dz =% g, odzo e
(15)
A —0as z > 40, A, > 0as z > —o. (16)

In order to solve equation (12) we consider the following
two sub-regions of R, :0 <z <hand z > h. The solutions

in these regions are denoted by A and A, respectively.
Hence,

d?A ~
A;m—/lem:O, 0<z<h, (17)
dz
d?A ~
AZ‘“ ~AA, =0, z>h (18)
dz
The general solution to (17) can be written in the form
A, =C,e” +C,e ™ (19)
The bounded solution to (18) is
A, =C.e™ (20)

The solution to (13) can be expressed in terms of modified
Bessel functions (see [17], formula 2.1.3.10, page 247):

A (2,2) =Cye?1, (et ?)

(21)
+Cge/?K, (cie‘“‘*ﬂ‘)”z),i =23,..,n

-1

where
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= 2 jou,p o’

i a; +p

JBE+ 42

a; + p ,

i (22)
and 1, ,K, are the modified Bessel functions of the first and

second kind, respectively.
The bounded solution to (13) in region R, is

A,(2,2) = Cppe*'21, (et her2) 23)
Continuity of the vector potential at z = h gives

Zh —Ah —4h
Cem+Ce™ =Ce ™. (24)

Integrating (12) with respect to zZfrom h—gto h+eg,
considering the limit as & — +0and using continuity of the

function Aat Z = hwe obtain
~C,e™™ —C, 26" +C, e ™" = —p1,Ir.J, (Ar,). (25)

Arbitrary constants C;,C,,C,,C,;,C;(1=2,3,..,n-1)
and C,, can be obtained from (14), (15), (24) and (25). The

solution in each region R, (i =12,...,n)is then found by
means of the inverse Hankel transform of the form

A(r,z) = T A4, 2)A,(Ar)dA, i=12...n. (26)

In the next section we consider one particular case — a single-
turn coil above a conducting half-space with varying electrical
and magnetic properties.

IV. A SINGLE-TURN COIL ABOVE A CONDUCTING HALF-SPACE
WITH VARYING PROPERTIES
Consider a single-turn coil of radius I, located at a distance
h above a conducting half-space [18] (see Fig. 2 in the limit
as d, — ).
The solution in region R, is given by (19) and (20). The

solution in the conducting half-space where the electrical
conductivity and magnetic permeability are given by (3) is
represented in the form (23). Using the boundary conditions

we determine all unknown constants C;,C,,C,,C,,. In

particular, the value of C, is
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o _ HoIndi(An)e " [(22u, — A, () —c(a + A1, ()]
i 220(Au, + BN, (©) +c(a+ P, )]

(27)

where for simplicity the subscript iin ¢;, 5;,C,and v;is
omitted.
The induced vector potential in region R, is

AJ.ind (ﬂ'! Z) = Cze_/12 ) (28)

where C,is given by (27). Applying the inverse Hankel
transform of the form (26) to (28) we obtain
ind _ T _A(z+h)
A" (r,2) = =L [F()3,(4r) 3, (an)e ¢ dA,
0
(29)

where

_ @A, - PN, (©) —cla+ p)1,(c)

F(4) = )
(22, = P, () +c(a + B)I,(c)

The induced change in impedance of the coil is given by the
formula

z :jT“’M"d (r, z)dl, (30)
L

where L is the contour of the coil. Substituting (29) into (30)
we obtain

Z™ = neou,r.Z, (31)

where

0

if

0

(2su, - A1, (€) - (@ + )1, (€)
(2su, + B, (€)+E(a + A1, (€)

= JZ(s)e ?*ds.
(32)

The following dimensionless parameters are used in (32):

277\/T . \/ﬁ’z + 452

C: =, = , =140 Um m’
Q-+ G+ n =T\ OUO,
a=ar, ,B=,Brc,}/=£. (33)

I
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Fig. 3 plots the change in impedance (Z) for three different

values of B namely, 5 =5, E = 2and E =0,
respectively (from top to bottom). The other parameters of the
problem are fixed at & =0,y =0.05and ' =5.The

calculated points in Fig. 3 correspond to different values of
n=12,...10 (from left to right). Computations are done

with Mathematica.

Im[z]
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03¢
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Fig. 3. The change in impedance (Z ) for three different values of

.
It is seen from the graph that the modulus of Z increases as
the parameter /3 increases.

V. COIL OF FINITE DIMENSIONS

Using (29) one can compute the induced vector potential of
a coil of finite dimensions shown in Fig. 1 (see [3], [18]).
Assume that Wis the number of turns in the coil. Consider

two rings of the coil centered at the points (r,,Z,)and
(r,,z,), respectively. The induced vector potential on the

ring centered at (r ) due to eddy currents induced in the

m’zm

ring centered at (I, , Z,,) can be computed as follows

i Mol wdzdr
" 2 (hz - hl)(ro - ri)

B (34)
x j F(2)J,(Ar,)J, (Ar, Je =+ d g,
0

wdzdr
(h, —h)(r, - 1;)

centered at (r,,Z,). The induced vector potential in the ring

where in the number of turns in the ring

) due to eddy currents produced by the
coil can be obtained as an integral of (34) with respect to

centered at (r,,,Z,
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r,and 2z, . The limits of integration are I;,I, and

n:

h,, h,, respectively. The result is

ind _ HolW 1 F(A) iz,
S By e G

(35)
X ]ar J,(Ar,)dr ﬂ[e’“"f“l) —1]d/1
. n%1 n n /1 )

Finally, integrating (35) with respect to I, from r;to I, and

with respect to z from h;to h,we obtain the vector

potential in the coil induced by eddy currents in the
conducting half-space in the form

ind _ ,UOIWZ
" 2(h, —h)?(r, 1)

v T F;j“) (e —e ™ Fa(r,,r,, 2)d2,
0

(36)

Ary

where (1,1, 4) = [ &, (&)dE.
i
Using (30) and (36) we obtain the induced change in
impedance of the whole coil:

ind jam,uOWZ
"2, —h) (- )

xT F(4) (e“h2 e )2 x(r,,r,, A)dA.

@37)

26

V1. A SINGLE-TURN COIL ABOVE A TWO-LAYER MEDIUM
In this section we consider another example of the general
theory. Consider a single-turn coil of radius I located at a

distance h from a two-layer medium (see Fig. 4).

178



INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

7 A

Fig. 4. A single-turn coil above a two-layer medium.

We assume that the electrical conductivity and magnetic
permeability of region R,are given by (3) but the properties

of the lower layer (region R;) are constant. This model can
be used to describe metal hardening [6], [7].
The functions A and A, satisfy equations (4) and (6) while

the function A, is the solution of the following equation

A LA A O

or: ror r?  oz?

—jog mous A, =0, (38)

where o3 and g are, respectively, the constant electrical

conductivity and relative magnetic permeability of region R,.
The boundary conditions are

oA, 1 6A,
o= 00 o= < l1m0» 39
Al|270 A2|270 62 | 0 ,Ul 82 0 ( )
~ 10A,, 1 0A
A2 |z:—d_ AS |z:—d’ /&2 62 |z=—d_ ,U3m 62 |z=—d'
(40)

Applying the Hankel transform (11) to (4) and (6) we obtain
the solution (19)-(21) in regions R, and R,. The solution to

(38) in the transformed space which is bounded as
Z— —0Iis

A,(1,2) =Cge®, (41)
where Q= \/ A+ jood u,ul.  The  constants

c,.C,,C;,C,,,Cyand C,can be found from (14), (15),
(24), (25). In particular, the constant C2 has the form
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sl d,(Ar)e ™ B
C, = =,
24 D

(42)

where

B = —p[(4t, - A1 21, (c) ~cla + A1, (c)/2]

G- BIDK, @) —cla+ KL Q12,
D =—p[(4i, + B12)1,(c) +c(a+ B)1,(c)/ 2]
+ (A, + BI2)K, () +c(a + B)K, (c)/ 2,
and

_E (45)
p= =
where

E = (/0 - 21,9)K,, (ce "2
_{_ﬁsc(a+ﬂ)e—(a+ﬂ)d/2K"/(Ce—(a+ﬁ)d/2),
F = (LB - 2,01, (ce @ 2)
+ﬁsc(a+ﬁ)e—(oﬁﬁ)dlzll'/(ce—(cﬁﬂ)dlz)

Here we used the notations

L Aiomplol B4k
a+pf ’ a+pB
a=a, fB=p,.

The induced vector potential (in the transformed space) is
given by (28) and (42). Applying the inverse Hankel
transform (26) to (28) we obtain the induced vector potential
in the form

A" (r,2) = —”02' [ %Jl(/ir)\ll(/lrc)e“”“)d/l, (46)
0

where B and D are given by (43) and (44), respectively. The
change in impedance of the coil is computed using (30) and
(46):

Zig = Jou,nt Z, (47)

where
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(48)

B = —Pl(si —7/2)1, ) - A1, ©)]
+ (s 12K, €) - A IK, @),
D = —pl(siy +7/2)1,©) + Ai1, ©)]
+ (s +n12)K, (C) +:31\/TK; ©),

k=l

_E

-z

E = (17— 201,/ + 1B2)K, (e €7712)
+2/1. 8, \/Tef(ém)y/Z K (Eef(fﬂy);//Z ),

D = (i — 2/1,5% + i), (Ge ¢ 7'2)
+ 2/}3:31\/797(§+”)7/2| ' (567(5“7)7/2 ),

Py =T\ O3 Hotty

- 2 i
d,5:2r—h,§=arc,77=,8rc,c: 'Bl\/T

ar . E+n

B, = .0 V_w/772+482 0 - O3y

2 = 1Y - 1 - m m '
S+nm \ o7 13

The change in impedance, Z , computed by means of (48) is
shown in Fig. 5 for the following values of the parameters:

y=02 6=15 u, =1 u, =100,
0=0.05 n=-4.

Im[z]

Fig. 5. The real and imaginary parts of Z for three values of
& 1 —4,—2and 0 (from top to bottom). Calculated points on

each curve correspond to different values of /3.
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The solution for a single-turn coil can easily be generalized
for the case of a coil of finite dimensions as it is done in the
previous section.

Analytical solution can also be constructed for the case
where a double conductor line is located above a multilayer
medium with varying electrical and magnetic properties.
Using the method of Fourier integral transform the system of
ordinary differential equations in each layer can be solved
analytically in terms of modified Bessel functions provided
the electrical conductivity and magnetic permeability of each
layer are exponential functions of the vertical coordinate.
Examples for the case of a conducting half-space or a two-
layer medium can be found in [20]-[22].

VII. CONCLUSIONS

Method of the Hankel integral transform is used in the present
paper in order to construct analytical solution of eddy current
problem where a coil with alternating current is located above
a conducting multilayer medium. The electrical conductivity
and magnetic permeability of each layer are exponential
functions of the vertical coordinate. The resulting system of
ordinary differential equations is solved analytically in terms
of Bessel functions of the first and second kind. Two
examples are considered in detail for the case of a conducting
half-space and two-layer medium. The change in impedance is
computed using Mathematica. The approach presented in the
paper can also be used to construct analytical solution for the
case where a double conductor line is located above a
conducting medium with varying electrical conductivity and
magnetic permeability.
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