
 

 

  
Abstract—Analytical solution of eddy current testing problem 

for the case of a planar multilayer medium is constructed in the 
present paper. It is assumed that the electrical conductivity and 
magnetic permeability of each layer are exponential functions of the 
vertical coordinate. The problem is solved by the method of the 
Hankel integral transform. The resulting system of ordinary 
differential equations is solved analytically using the modified Bessel 
functions of the first and second kind. Two particular cases are 
considered in detail: (a) a single-turn coil above a conducting half-
space with varying electrical conductivity and magnetic permeability 
and (b) a single-turn coil above a two-layer medium where the 
properties of the upper layer exponentially vary with depth while the 
properties of the lower half-space are assumed to be constant. Results 
of numerical calculations of the change in impedance are presented.  
 

Keywords—eddy current testing, multilayer medium, electrical 
conductivity, magnetic permeability.  

I. INTRODUCTION 
ATHEMATICAL models of eddy current testing problems 
for planar multilayer medium with constant electrical 

and magnetic properties are well-developed in the literature 
[1]-[4].  Analytical solutions of direct problems for multilayer 
medium are usually constructed by means of integral 
transforms (such as Hankel or Fourier integral transforms).  
The resulting system of ordinary differential equations in the 
transformed space is then easily solved analytically if the 
properties of each layer of the conducting medium are 
constant.  

Alternative approach is developed in [5] where the 
magnetic field is assumed to be zero at a sufficiently large 
distance from the axis of a coil. Such a method is known as 
the TREE (TRuncated Eigenfuction Expansion) method in the 
literature [4]. In this case analytical solutions to eddy current 
problems can be constructed in the form of series expansions.  

Since the range of applications of eddy current method is 
quite wide it is not surprising to know that in some cases the 
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electrical conductivity and magnetic permeability of a 
conducting medium can vary with respect to spatial 
coordinates. It is shown in [6] and [7] that special type of 
treatment of ferromagnetic metals (such as surface hardening) 
can lead to the presence of a surface layer with reduced 
magnetic permeability which varies exponentially with respect 
to the vertical coordinate. In order to optimize the 
performance of gas turbines it is necessary to increase firing 
temperatures. As a result, blades are usually protected from 
the exposure to high temperatures by special layers containing 
aluminium and chrome in special proportions [8]. The 
depletion of aluminimum in this case leads to the variation of 
electrical conductivity with respect to the vertical coordinate.  

Hence, in order to adequately describe eddy current 
problem in the above mentioned cases it is necessary to 
develop mathematical models which take into account 
variability of the electrical conductivity and/or magnetic 
permeability with respect to one geometrical coordinate (the 
vertical coordinate in the case of a planar multilayer medium). 
Two approaches are usually used in such cases. One method is 
based on the assumption that the variation of electrical and/or 
magnetic properties of the medium can be represented by 
piecewise constant functions. In other words, a conducting 
layer with varying properties is divided into a large number of 
relatively thin sub-layers where the electrical conductivity 
and/or magnetic permeability of each sub-layer are constant. 
This approach is used in [8], [9] for a rectangular coordinate 
system, in [10] for a cylindrical coordinate system and in [11] 
for a spherical coordinate system. Note that up to 50 layers are 
used in [9] and up to 20 layers in [8]. In addition, it is 
estimated in [8] that the use of many layers affects 
computational efficiency by increasing computational time.  

Alternative approach is based on the assumption that simple 
model profiles (for example, in the form of exponential or 
power functions) can be used in order to represent variability 
of the properties of the conducting medium in one spatial 
direction (see, for example, [3], [12]-[16]).  

In the present paper we construct analytical solutions for 
the case where a single-turn coil is located above a multilayer 
conducting medium. It is assumed that the electrical 
conductivity and magnetic permeability of each layer can vary 
with respect to the vertical coordinate. In particular, the 
electrical conductivity and magnetic permeability in each 
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layer are assumed to be exponential functions of the vertical 
coordinate. Some particular cases of the suggested solutions 
are considered in detail. Results of numerical calculations are 
presented.  

II. A COIL ABOVE A MULTILAYER MEDIUM WITH VARYING 
PROPERTIES 

Consider an air core coil located above a multilayer 
medium (see Fig. 1). The outer and inner radii of the coil are 

or and ir , respectively. The height of the coil is 12 hh − , 

where 1h is the lift-off. The coil is located in free space 

(region 1R ). The thickness of each conducting layer iR is 

denoted by id , .1,...,3,2 −= ni The bottom layer nR is 
assumed to be infinite in the vertical direction. 

( )0,1 111 == σµR

ir

or 1h
2h

2d

3d

1−nd

O ( )222 , σµR

( )333 , σµR

( )111 , −−− nnnR σµ

( )nnnR σµ ,

 
Fig. 1. An air core coil above a multilayer medium.  

 
Each conducting layer niRi ,...,3,2, = is characterized by 

the two parameters: the electrical conductivity iσ and 

magnetic permeability iµ .  
We consider a system of cylindrical polar coordinates 

),,( zr ϕ centered at O, the z -axis is directed upwards. The 
coil is carrying alternating current of the form 

 

,),( ϕ
ω eehrII tje rr

=                                                           (1) 

 
where ,, 21 hhhrrr oi ≤≤≤≤ ω is the frequency and 

ϕer is the unit vector in the −ϕ direction. In this case it is 

natural to assume that the vector potential iA
r

in each region 

niRi ,...,2,1, = has only one non-zero component of the 
form 

 

.),( ϕ
ω eezrAA tj

ii
rr

=                                                      (2) 

 
We assume that the electrical conductivity iσ and magnetic 

permeability iµ in each region iR depends on the vertical 

coordinate. More precisely, iσ and iµ are modeled by the 
following relations 
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m
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ii

=
== βσσαµµµ

            (3) 

 
where 0µ is the magnetic constant and m

i
m
iii σµβα ,,, are 

constants.  

III. A SINGLE-TURN COIL ABOVE A MULTILAYER MEDIUM 
The first step in solving the problem is to find the solution 

for the case where a single-turn coil of radius cr is located at 

distance h above a conducting multilayer medium (see Fig. 
2).  
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Fig. 2. A single-turn coil above a multilayer medium.  
 

Using the Maxwell’s equations we obtain the following 
system of equations for the amplitudes ),( zrAi of the vector 

potential in each region niRi ,...,2,1, = (see, for example, 
[3]): 
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where )(xδ is the Dirac delta-function.  
Using (3) we rewrite equations (5) in the form 
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The boundary conditions are  
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The following conditions hold at infinity: 
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Applying the Hankel integral transform of the form 
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to problem (4), (6)-(10) we obtain 
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0~
1 →A as ,+∞→z 0~

→nA as .−∞→z               (16) 
 
In order to solve equation (12) we consider the following 

two sub-regions of :1R hz <<0 and hz > . The solutions 

in these regions are denoted by 10
~A and 11

~A , respectively. 
Hence, 
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The general solution to (17) can be written in the form 
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The bounded solution to (18) is 
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The solution to (13) can be expressed in terms of modified 
Bessel functions (see [17], formula 2.1.3.10, page 247): 
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where  
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and 

ii
KI νν , are the modified Bessel functions of the first and 

second kind, respectively.  
The bounded solution to (13) in region nR is 
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Continuity of the vector potential at hz = gives 
 

hhh eCeCeC λλλ −− =+ 321 .                                             (24) 
 
Integrating (12) with respect to z from ε−h to ε+h , 
considering the limit as 0+→ε and using continuity of the 

function 1
~A at hz = we obtain 
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Arbitrary constants )1,..,3,2(,,,, 54321 −= niCCCCC ii  

and nC4 can be obtained from (14), (15), (24) and (25). The 

solution in each region ),...,2,1( niRi = is then found by 
means of the inverse Hankel transform of the form 
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In the next section we consider one particular case – a single-
turn coil above a conducting half-space with varying electrical 
and magnetic properties.  

IV. A SINGLE-TURN COIL ABOVE A CONDUCTING HALF-SPACE 
WITH VARYING PROPERTIES  

Consider a single-turn coil of radius cr located at a distance 

h above a conducting half-space [18] (see Fig. 2 in the limit 
as ∞→2d ).  

 The solution in region 1R is given by (19) and (20). The 
solution in the conducting half-space where the electrical 
conductivity and magnetic permeability are given by (3) is 
represented in the form (23). Using the boundary conditions 
we determine all unknown constants nCCCC 4321 ,,, . In 

particular, the value of 2C is 
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                                                                                             (27) 
 
where for simplicity the subscript i in iii c,, βα and iν is 
omitted.  
     The induced vector potential in region 1R is   
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where 2C is given by (27). Applying the inverse Hankel 
transform of the form (26) to (28) we obtain 
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The induced change in impedance of the coil is given by the 
formula 
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where L is the contour of the coil. Substituting (29) into (30) 
we obtain 
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The following dimensionless parameters are used in (32): 
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Fig. 3 plots the change in impedance )(Z for three different 

values of β~ , namely, 5~
=β , 2~

=β and 0~
=β , 

respectively (from top to bottom). The other parameters of the 
problem are fixed at 05.0,0~ == γα and .52 =mµ The 
calculated points in Fig. 3 correspond to different values of 

10,...,2,1=η (from left to right). Computations are done 
with Mathematica.  
 

0.05 0.1 0.15 0.2
Re@zD

0.1

0.2

0.3

0.4

0.5
Im@zD

 
 

Fig. 3. The change in impedance )(Z for three different values of 

.~β  

It is seen from the graph that the modulus of Z increases as 

the parameter β~ increases.  

V. COIL OF FINITE DIMENSIONS 
    Using (29) one can compute the induced vector potential of 
a coil of finite dimensions shown in Fig. 1 (see [3], [18]).  
Assume that w is the number of turns in the coil. Consider 
two rings of the coil centered at the points ),( nn zr and 

),( mm zr , respectively. The induced vector potential on the 

ring centered at ),( mm zr due to eddy currents induced in the 

ring centered at ),( nn zr can be computed as follows 
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where 
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in the number of turns in the ring 

centered at ),( nn zr . The induced vector potential in the ring 

centered at ),( mm zr due to eddy currents produced by the 
coil can be obtained as an integral of (34) with respect to 

nr and nz . The limits of integration are oi rr , and 
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Finally, integrating (35) with respect to mr from ir to or and 

with respect to mz from 1h to 2h we obtain the vector 
potential in the coil induced by eddy currents in the 
conducting half-space in the form 
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    Using (30) and (36) we obtain the induced change in 
impedance of the whole coil: 
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VI. A SINGLE-TURN COIL ABOVE A TWO-LAYER MEDIUM 
In this section we consider another example of the general 
theory. Consider a single-turn coil of radius cr located at a 

distance h from a two-layer medium (see Fig. 4).  
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Fig. 4. A single-turn coil above a two-layer medium. 

 
We assume that the electrical conductivity and magnetic 
permeability of region 2R are given by (3) but the properties 

of the lower layer (region 3R ) are constant. This model can 
be used to describe metal hardening [6], [7].  
    The functions 1A and 2A satisfy equations (4) and (6) while 

the function 3A is the solution of the following equation 
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where m

3σ and m
3µ are, respectively, the constant electrical 

conductivity and relative magnetic permeability of region 3R . 
The boundary conditions are 
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Applying the Hankel transform (11) to (4) and (6) we obtain 
the solution (19)-(21) in regions 1R and 2R . The solution to 
(38) in the transformed space which is bounded as 

−∞→z is 
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Here we used the notations  
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The induced vector potential (in the transformed space) is 
given by (28) and (42). Applying the inverse Hankel 
transform (26) to (28) we obtain the induced vector potential 
in the form 
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where B and D are given by (43) and (44), respectively. The 
change in impedance of the coil is computed using (30) and 
(46): 
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The change in impedance, Z , computed by means of (48) is 
shown in Fig. 5 for the following values of the parameters: 
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Fig. 5. The real and imaginary parts of Z for three values of 

2,4: −−ξ and 0 (from top to bottom). Calculated points on 

each curve correspond to different values of 1β .  
 

The solution for a single-turn coil can easily be generalized 
for the case of a coil of finite dimensions as it is done in the 
previous section.     
    Analytical solution can also be constructed for the case 
where a double conductor line is located above a multilayer 
medium with varying electrical and magnetic properties. 
Using the method of Fourier integral transform the system of 
ordinary differential equations in each layer can be solved 
analytically in terms of modified Bessel functions provided 
the electrical conductivity and magnetic permeability of each 
layer are exponential functions of the vertical coordinate. 
Examples for the case of a conducting half-space or a two-
layer medium can be found in [20]-[22].  

VII. CONCLUSIONS 
Method of the Hankel integral transform is used in the present 
paper in order to construct analytical solution of eddy current 
problem where a coil with alternating current is located above 
a conducting multilayer medium. The electrical conductivity 
and magnetic permeability of each layer are exponential 
functions of the vertical coordinate. The resulting system of 
ordinary differential equations is solved analytically in terms 
of Bessel functions of the first and second kind. Two 
examples are considered in detail for the case of a conducting 
half-space and two-layer medium. The change in impedance is 
computed using Mathematica. The approach presented in the 
paper can also be used to construct analytical solution for the 
case where a double conductor line is located above a 
conducting medium with varying electrical conductivity and 
magnetic permeability.  
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