

LISBOA, PORTUGAL

JULY 12TH – 16TH, 2015

BOOK OF ABSTRACTS

19TH EUROPEAN SYMPOSIUM ON ORGANIC CHEMISTRY

DIASTEREOSELECTIVE HYDROXYMETHYLATION OF CYCLIC *N-TERT*-BUTANESULFINYLKETIMINES USING METHOXYMETHANOL AS FORMALDEHYDE SOURCE

Martins Priede, Mihail Kazak, Toms Kalnins, Kirill Shubin, Edgars Suna*

Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia, edgars@osi.lv

Hydroxymethylation of cyclic (S_S)-*tert*-butylsulfinylketimine-derived lithium enamides with methoxymethanol as a source of anhydrous monomeric formaldehyde affords (S_S, R)– α -hydroxymethyl ketimines with excellent diastereoselectivity (99:1 dr). Subsequent diastereoselective reduction of the ketimine moiety from *Re*-face with BH₃-THF provided (S_S, R, R)-*N*-sulfinyl-1,3-amino alcohols. Diastereomeric (S_S, R, S)-1,3-amino alcohols were also obtained by using LiBHEt₃ as the reducing agent. The *tert*-butylsulfinyl chiral auxiliary controls the diastereoselectivity of both hydroxymethylation reaction and subsequent reduction of ketimines. Further studies to expand the scope of aldehydes in the reaction with (S_S)-*tert*-butylsulfinyl ketimines are ongoing in our laboratory.^[1]

References:

^[1] M. Priede, M. Kazak, T. Kalnins, K. Shubin, E. Suna, J. Org. Chem. 2014, 79, 3715–3724.