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Abstract: - Linear stability analysis of mixing layers in shallow water is performed in the present paper under 

the following assumptions: (a) the fluid contains uniformly distributed heavy small particles, (b) the mixing 

layer is slightly curved in the longitudinal direction, (c) the friction coefficient changes in the transverse 

direction. Marginal stability curves are calculated for different base flow velocity profiles which represent both 

stably and unstably curved mixing layers. The effect of all parameters on the stability characteristics of the flow 

is investigated. 

 

 

Key-Words: - Linear stability, shallow mixing layer, non-uniform friction, curvature 

 

1 Introduction 
Typical examples of shallow mixing layers are 

flows at river junctions or in compound and 

composite channels. Linear stability analyses of 

shallow mixing layers with constant bottom friction 

show that shallowness of the fluid layer plays an 

important role in preventing the development of 

three-dimensional instabilities [1]-[4]. The presence 

of a solid boundary is an additional factor that 

stabilizes the flow. Experimental data show that 

bottom friction also affects the growth of a mixing 

layer [5]-[8].   

   Shallow mixing layers in nature and engineering 

can be also slightly curved. The effect of small 

curvature on the stability of free shear layers is 

investigated in [9] where it is shown that curvature 

has a stabilizing effect for the case of stably curved 

mixing layer and destabilizes the flow for unstably 

curved layer.  

    The analysis in [1]-[4] is performed for the case 

where bottom friction is modeled by means of the 

Chezy or Manning formulas [10]. It is assumed in 

[1]-[4] that the friction coefficient is constant in the 

transverse direction. Recent experimental analyses 

[11]-[15] indicated that if fluid is in contact with 

porous layer then the friction force changes 

considerably in the transverse direction. From a 

practical point of view such a situation occurs in 

compound channels (or rivers) during floods. In this 

case friction in the floodplain is much higher than 

the friction in the main channel. It is shown in [11]-

[15] that the characteristics of mass and momentum 

exchange in case of variable friction are different 

from the corresponding characteristics for the case 

of constant friction. 

     Many environmental flows (for example, flows 

in rivers or channels) contain particles [16]. The 

presence of heavy particles also can affect the 

dynamics of the flow and, in particular, modify 

linear stability characteristics of the flow. Spatial 

and temporal instability of slightly curved particle-

laden shallow mixing layers for the case of constant 

friction is investigated in [17]. 

In the present paper we investigate the combined 

effect of small curvature, variable friction in the 

transverse direction and presence of small heavy 

particles on the stability characteristics of shallow 

mixing layers. Preliminary results of stability 

analysis in this case are reported in [18]. The 

corresponding linear stability problem is solved 

numerically for different values of the parameters of 

the problem. It is shown that increase of the particle 

concentration and small curvature, as well as bottom 

friction has stabilizing effect on the flow for the 

case of stably curved mixing layers. On the other 

hand, unstably curved mixing layer has a 

destabilizing influence on the base flow. Marginal 

stability curves and surfaces for different values of 

the parameters of the problem are plotted and 

analyzed.  
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2 Mathematical Formulation of the 

Problem 
Consider the two-dimensional shallow water 

equations under the rigid-lid assumption  [17] 
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where p is the pressure, u and v are the velocity 

components of the fluid in the x and y -directions, 

respectively, 
pu and 

pv are the components of 

particle velocities, h is water depth, )(yc f is the 

non-constant friction coefficient, B is the particle 

loading parameter [16], [17], and R is the radius of 

curvature ( 1R ).  

Equations (1)-(3) are derived under the following 

simplifying assumptions:  (a) water depth is 

constant (this assumption is usually referred to as 

the rigid-lid assumption); (b) bottom friction is 

modeled by the Chezy fomula [13] with non-

constant friction coefficient; (c) curvature is 

assumed to be small )1/1( R ; (d) particles are 

uniformly distributed in fluid; (e) no dynamic 

interaction between carrier fluid and particles is 

assumed. Assumption (a) is verified in [8] where it 

is shown that from a linear stability point of view 

rigid-lid assumption works well for small Froude 

numbers. Assumptions (d) and (e) are discussed in 

[16] where it is shown that these assumptions are 

reasonable for the case of large Stokes number of 

the flow.  

   Introducing the stream function by the relations 

,
y

u







x
v







                                             (4) 

and eliminating the pressure we obtain from (1)-(3) 

the following equation: 
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                                                                         (5) 

The function )(yc f is assumed to be of the form 

),()(
0

ycyc ff                                              (6) 

where 0fc  is constant and )(y is sufficiently 

smooth “shape” function.  

In a classical hydrodynamic stability theory the flow 

and pressure field is represented as a sum of the 

base flow and small perturbations. The base flow 

)(yU is obtained as a simple (usually one-

dimensional) solution of the equations of motion. 

Such an approach cannot be used for shallow water 

equations in the form (1)-(3). The reason is the 

presence of empirical friction terms in (2)-(3). As a 

result, the base flow profiles for the system of 

shallow water equations are selected on the basis of 

the available experimental data and numerical 

simulations. In particular, hyperbolic tangent profile 

is usually used as a base flow for the case of mixing 

layers. In the present study the following three base 

flow profiles are used: 

,2/)tanh1()( yyU                                    (7) 

,tanh2)( yyU                                           (8) 

.tanh2)( yyU                                           (9) 

Experimental data [19] show that for mildly curved 

mixing layers base flow profiles are similar to that 

of plane mixing layers. As a result, we adopted 

profiles (7)-(9) in the present study. Profiles (7) and 

(8) represent the case where the high-speed stream 

is on the outside of the low-speed stream. Such a 

case is referred to as a stably curved mixing layer. 

Similarly, (9) is known as an unstably curved 

mixing layer since the high-speed stream is on the 

inside of the low-speed stream. The difference 

between profiles (7) and (8) is that 0)( yU  as 

y  for the base flow (7) while 1)( yU  as 

y for the base flow (8). Thus, profile (7) has 

a vanishing velocity as y . 

    In order to study linear stability of flows (7)-(9) 

we represent the stream function in the form 

...),,()(),,( 10  tyxytyx                  (10) 
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where )(0 y  is the stream function of the base 

flow and ).()(0 yUyy   Substituting (10) into (5) 

and linearizing the resulting equation in the 

neighborhood of the base flow we obtain 
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Using the method of normal modes [20] the 

perturbed stream function ),,(1 tyx is represented 

in the form 
)(

1 )(),,( ctxieytyx                                   (12) 

where )(y  is the amplitude of the normal 

perturbation,  is the wave number and 

ir iccc  is the complex eigenvalue. The base 

flow )(yU is said to be stable if all 0ic and 

unstable if at least one .0ic  Substituting (12) into 

(11) we obtain 
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The boundary conditions are 

.0)(                                                       (14) 

Here 
h

bc
S

f

2

0
 is the stability parameter and b is 

the half-width of the mixing layer. 

Note that by adopting the base flow profiles (7)-(9) 

we are using parallel flow assumption (the base flow 

is independent on the longitudinal coordinate x ). 

Such an approximation represents the leading order 

solution in a multiple scale expansion which takes 

into account slow flow variation in the longitudinal 

direction [21].  

 

 

3 Numerical Method 
Eigenvalue problem (13), (14) is solved numerically 

by means of the pseudospectal collocation method 

based on the Chebyshev polynomials [22]. The 

interval  y is mapped onto the interval 

11   by means of the substitution 

yarctan
2


  . The solution to (13) is sought in 

the following form  







1

0

2 ),()1()(
N

k

kk Ta                           (15) 

where  arccoscos)( kTk  is the Chebyshev 

polynomial of the first kind of order k and ka are 

unknown coefficients. The factor )1( 2 in (15) is 

chosen in order to satisfy zero boundary conditions 

at 1 automatically.                                                                    

The collocation points are  

.1,...,2,1,cos  Nm
N

m
m


                     (16)               

Using (13)-(16) we obtain the generalized 

eigenvalue problem of the form 

,0)(  acBA                                                   (17) 

where A and B are complex-valued matrices and 
T

Naaaa )...( 110  . Since )( is selected in the 

form (15), the matrix B in (17) is non-singular.   

Numerical results are obtained for the following 

form of the “shape” function :)(y  

,tanh
2

)1(

2

1
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



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where 1

0

1 
f

f

c

c
  is the ratio of the friction 

coefficients in the floodplain and main channel and 

  is the parameter which characterizes sharpness of 

the variation of the friction coefficient in the 

transverse direction.   

 

 

4 Numerical Results for the Base Flow 

Profile (7) 
The marginal stability curves (the curves where 

0ic ) for the case of uniform friction ( 1 ) and 

straight channel ( R ) are shown in Fig. 1.  

Three curves in Fig. 1 (from top to bottom) 

correspond to the following three values of the 

particle loading parameter :B 0, 0.02 and 0.04. 

Since the critical bed friction number crS decreases 

as the parameter B increases, we conclude that the 

particle loading parameter has a stabilizing effect on 

the flow.  
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Fig. 1. Marginal stability curves for the case 

1,1,  R and three values of 

02.0,0: BB  and 04.0B (from top to bottom). 

                                                                                    

The effect of non-uniform friction on the marginal 

stability curves for the case 5.1,  R is 

shown in Fig. 2. The three curves in Fig. 2 

correspond to the same values of B as in Fig. 1. 

Comparing Figs. 1 and 2 we can see that non-

uniform friction stabilizes the flow: the maxima of 

the marginal stability curves in Fig. 2 occur at lower 

values of S than in Fig. 1 (uniform friction).  

     S  

 
                                                                                                                                                                         

Fig. 2. Marginal stability curves for the case 

1,5.1,  R and three values of 

02.0,0: BB  and 04.0B (from top to bottom).  

 

The combined effect of the three parameters ,R  

and B on the stability boundary can be analyzed if 

we compute the critical values of the bed friction 

number S , namely, )(max 


SScr  for several 

values of the parameters. The marginal stability 

surfaces are shown in Figs. 3 – 5.  Fig. 3 plots the 

critical values of S (on the vertical axis) for 

different values of  and 31:  B and 

05.00  B for R .  

 
Fig. 3. Marginal stability surface for the case R

and different values of   and .B   

 

Similar graphs are shown in Fig. 4 where the 

marginal stability surfaces are shown for the case 

03.0/1 R (slightly curved mixing layer).  

 
Fig. 4. Marginal stability surface for the case 

03.0/1 R and different values of   and .B   

 

The stabilizing effect of small curvature can be seen 

from the analysis of Figs. 3 and 4: critical bed 

friction numbers decrease as R/1 increases. 

Larger value of the parameter R/1 is shown in Fig. 

5 (the marginal stability surface is constructed for 

the same range of  and B values as in Figs. 3 and 

4). Stabilization of the base flow is even more 

pronounced for the case 06.0/1 R . 
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Fig. 5. Marginal stability surface for the case 

06.0/1 R and and different values of   and .B   

 

Comparing Figs. 3 – 5 we see that all three 

parameters ,R  and B have a stabilizing effect on 

the flow: the critical bed friction number decreases 

as all parameters increase. 

 

 

5  Numerical Results for the Base Flow 

Profile (8) 
In this section we present the results of numerical 

calculations (marginal stability curves and surfaces) 

for the base flow profile (8). In this case the base 

flow velocity approaches non-zero limits as 

y and y .  

   Fig. 6 plots the marginal stability curves for plane 

mixing layer ( 0/1 R ) and uniform friction  

( 1 ). It can be seen from Fig. 6 that the particle 

loading parameter has a stabilizing effect on the 

flow.  

S  

 
                                                                           

Fig. 6. Marginal stability curves for the case 

1,1,  R and three values of 

02.0,0: BB  and 04.0B (from top to bottom). 

 

Comparing Fig. 1 and Fig. 5 we see that the velocity 

profile (8) is more stable from the linear stability 

point of view than the profile (7).  

   The marginal stability curves for a planar mixing 

layer and non-uniform friction ( 5.1 ) are shown 

in Fig. 7 for the same values of the other parameters 

as in Fig. 6. Non-uniform friction stabilizes the flow 

as one can see from the comparison of Figs. 2 and 7.  

 

S  

 
                                                                           

Fig. 7. Marginal stability curves for the case 

1,5.1,  R and three values of 

02.0,0: BB  and 04.0B (from top to bottom). 

 

 Fig. 8 plots the marginal stability surface in the 

range 31   and 05.00  B for R .  

 
Fig. 8. Marginal stability surface for the case R

and different values of   and .B   

 

Both non-uniform friction and particle loading have 

stabilizing effect on the flow as in the case of the 

base flow profile (7). Finally, in Fig. 9 we present 
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the marginal stability surfaces in the range 

31   and 05.00  B for 03.0/1 R .   

    Small curvature also has a stabilizing effect on 

the flow (it can be seen from the comparison of Fig. 

8 and 9). In addition, stabilization for the case of the 

base flow profile (8) is more pronounced than for 

the base flow profile (7).  

    Comparison of the linear stability characteristics 

for the base flow profiles (7) and (8) shows that the 

case of vanishing velocity as y is less stable 

than the case where )(yU approaches non-zero limit 

as y . 

  

 
Fig. 9. Marginal stability surface for the case 

03.0/1 R and different values of   and .B   

 

 

6  Numerical Results for the Base Flow 

Profile (9) 
The results for profiles (8) and (9) for the case of 

plane shallow mixing layers would be exactly the 

same. Thus, in this section we investigate the effect 

of small curvature on the linear stability of the base 

flow (9).  

   Fig. 10 plots the marginal stability surface for the 

case 03.0/1 R and different values of   and .B   

 
Fig. 10. Marginal stability surface for the case 

03.0/1 R and different values of   and .B  

 

Comparing Figs. 9 and 10 we see that unstably 

curved mixing layer (the base flow profile (9)) is 

less stable than the base flow (8) which corresponds 

to stably curved mixing layer. The reason can be 

associated with centrifugal instability.  

 

 

7 Conclusion 
In this paper we presented an extensive parametric 

study of linear stability characteristics of shallow 

mixing layers. The combined effect of several 

parameters is analyzed: (a) particle loading 

parameter representing the effect of small heavy 

particles in the carrier fluid; (b) small curvature; (c) 

variable friction in the transverse direction. The 

analysis is performed for two types of base flows: 

(a) stably curved mixing layer and (b) unstably 

curved mixing layer. The major results of the study 

are as follows. 

     It is shown that for stably curved mixing layers 

all three parameters: particle loading parameter, 

small curvature and non-uniform friction have a 

stabilizing influence on the flow. Unstably curved 

mixing layer is also stabilized by non-uniform 

friction while the increase in curvature destabilizes 

the flow.   

    Experiments in [11]-[15] show that the base flow 

profile is not symmetric with respect to the 

transverse coordinate. The effect of base flow 

asymmetry on the stability of shallow mixing layers 

with uniform friction is analyzed in [23]. The 

authors are currently investigating linear stability of 

shallow mixing layers with non-uniform friction for 

the case where the base flow is not symmetric.  
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