
SIMULATION-BASED FITNESS LANDSCAPE ANALYSIS AND OPTIMISATION OF 

COMPLEX SYSTEMS 
 

 

Vitaly Bolshakov 
(a)

 

 

 
(a)

Riga Technical University, Kalku Street 1, LV-1658, Riga, Latvia 

 
(a)

Vitalijs.Bolsakovs@rtu.lv 

 

 

 

 

ABSTRACT 

The research is dedicated to the development of 

methods and algorithms for a simulation-based fitness 

landscape analysis and optimisation of complex 

systems. Research is motivated by a wide spread of hard 

optimization problems nowadays and a relevance of 

improvement of their solution methods. Application of 

the fitness landscape analysis methods in the 

engineering field and tasks of simulation-based 

optimisation are reviewed and analysed in the paper. A 

formalised scheme of simulation-based optimisation 

enhanced by fitness landscape analysis is developed. 

Strength and weakness of the fitness landscape analysis 

is researched on the benchmark landscapes, both with 

relations between efficiency of the optimisation 

algorithm and structural features of the corresponding 

fitness landscapes. The prototype of a software tool for 

the fitness landscape analysis of simulation optimisation 

problems is developed. Approbation of the developed 

methods is performed in optimisation of vehicle 

schedule and routes in the delivery planning task. 

Various metaheuristic optimisation scenarios with 

application of the fitness landscape analysis are 

investigated. 

 

Keywords: simulation, optimisation, fitness landscape 

analysis, metaheuristic methods, vehicle scheduling 

 

1. INTRODUCTION 

In various cases, traditional optimisation methods 

(linear programming, integer programming, stochastic 

optimisation, etc.) could not be applied to solve hard 

optimisation problems. These methods may lead to 

ineffective solutions for such problems due to a high 

number of parameters of an optimised system, existence 

of stochastic parameters and a large solution search 

space. A number of metaheuristic optimisation 

techniques are applied for the optimisation of these 

tasks. To choose an appropriate technique, fitness 

landscape analysis of an optimisation problem can be 

performed. At the present time, simulation optimisation 

technology is a necessary tool in optimisation of 

complex systems, where solution evaluation can be 

complicated. Simulation-based fitness landscape 

analysis provides an efficient approach to analysis of 

suitability of the optimisation algorithms. 

Nowadays, fitness landscape analysis methods are 

used for the determination of the problem hardness for 

the metaheuristic algorithms (Stadler et al. 2002, Pitzer 

and Affenzeller 2012). However, there are few 

researches on fitness landscape analysis within 

simulation optimisation of complex systems. 

Simulation-based fitness landscape analysis will allow 

better selection of optimisation algorithms, as well as 

allowing for construction and adjustment of the most 

appropriate algorithm. The research is aimed at 

developing methods for the simulation-based fitness 

landscape analysis and optimisation of complex 

systems.  

The structure of the paper is as follows. Section 2 

gives formal definitions of fitness landscape and its 

analysis techniques. The problem of the simulation-

based fitness landscape analysis is defined. Section 3 

discusses the landscapes of the benchmark problems. 

Section 4 presents a procedure of the simulation-based 

fitness landscape analysis. A case study problem is 

given. Section 5 describes application of metaheuristic 

optimisation methods in solving of a combined vehicle 

routing and scheduling task.  

 

2. LITERATURE REVIEW AND PROBLEM 

STATEMENT 

 

2.1. Simulation-based Optimisation for NP-hard 

Problems 

Modern optimisation problems in logistics and industry 

are characterized by large dimensions, uncertainty and 

nonlinearity. A factor that strongly influences the 

hardness of the optimisation problem is computational 

complexity of the problem. The research focuses on the 

NP-hard problems. Other factors that strongly influence 

the hardness of the optimisation problem can be the 

stochastic nature of the optimised system and the 

hardness of obtaining the analytical form of the 

objective function. To find solutions of such complex, 

large-scale, stochastic optimisation problems 

simulation-based optimisation is applied.  

Numerical optimisation methods form a natural 

choice in solving complex stochastic optimisation 

problems, where the closed form of the objective 

function is frequently unknown (Gosavi 2003). These 

methods include metaheuristic optimisation methods, 
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which facilitate finding good solutions to large and 

complex optimisation problems in a reasonable time 

with the application of different heuristic and stochastic 

methods. Although metaheuristic methods don’t 

guarantee to find the optimal solution of the problem, 

there is a high interest for such methods in the applied 

optimisation of real life problems (Glover and 

Kochenberger 2003). These methods include such 

examples as the Genetic Algorithm (GA) (Goldberg 

1989) and Evolution Strategy (ES) (Schwefel 1995). 

The application of the metaheuristic and other 

numerical methods becomes more important for 

especially hard optimisation problems such as NP-hard 

combinatorial optimisation problems (Dreo et al. 2006). 

To make the selection and adjustment of an 

optimisation method more reasonable, a fitness 

landscape analysis offers methods for the investigation 

of the problem’s search space. 

 

2.2. The Concept of Fitness Landscape Analysis 

The fitness landscape analysis provides methods and 

techniques for a mathematical analysis of a search space 

of optimisation problems. It can be applied as a support 

tool to enhance optimisation of complex systems, and it 

is widely considered in literature (Weinberger 1990, 

Jones and Forest 1997, Stadler 2002). The fitness 

landscape is interpreted as a combination of a fitness 

function of the optimisation problem and the 

relationships or a distance metric between the solutions 

in the search space (Reeves and Rowe 2002). 

It was proposed that the structures of a fitness 

landscape affect the way, in which a search space is 

examined by a metaheuristic optimisation algorithm. 

The fitness landscape analysis would allow getting 

more information on the problem’s properties 

dependent on a specific optimisation method, which 

will guide the optimisation process (Reeves and Rowe 

2002). With the landscape analysis it is possible to get 

measures of the problem’s difficulty, and the 

recommended configuration of an optimisation 

algorithm. Searching for better problem subclass 

specific algorithms and configurations will provide 

useful knowledge on the problem solution scenarios 

(Pitzer and Affenzeller 2012). 

Formal definitions of fitness landscapes are 

provided in the literature. In the following definition 

(Jones 1995) a representation space R defines a set of 

representations and the search operator ϕ is defined as a 

function ϕ: M(R) × M(R) → [0, 1], where M(R) is a 

multiset of representations. A value of ϕ(v, w) = p for 

v, w ∈ M(R) defines a probability p that v will be 

modified to w by application of the operator ϕ. The 

fitness landscape is defined as the 5-tuple: 

 

  L = (R, ϕ, f, F, >F), (1) 

 

where f is a fitness function; F is the fitness space with 

a partial order >F. The landscape can be represented as a 

directed labelled graph GL = (V, E), where vertices are 

V ⊆ M(R), and edges are E ⊆ V × V. In this 

representation, a vertex v ∈ V is labelled as f(v), and 

edge (v, w) is labelled ϕ(v, w). Similar to structures of 

nature landscapes hill ridges, valleys and other 

structures can be identified in the fitness landscape. 

Following structures are formalised in the literature: 

peak (or maximum), global-optimum, local-optimum, 

plateau, basin of attraction (Jones 1995).  

The major highlighted factors, which affect the 

hardness of the optimisation problem, are: the modality, 

which defines a number and density of optima in a 

search space (Reeves and Rowe 2002); ruggedness that 

characterizes the impact of all landscape structures on 

the hardness of the search (Merz and Freisleben 2000); 

and neutrality, which characterizes a number of plateaus 

(Reidys and Stadler 1998).  

 

2.3. Fitness Landscape Analysis Techniques 

Different techniques have been developed for a fitness 

landscape analysis by evaluating its structural 

characteristics (Jones and Forest 1997, Vassilev et al. 

2000, Smith et al. 2002, Collard et al. 2004).  

Fitness landscape analysis techniques apply 

different strategies for data collection based on simple 

moves, which generate a trajectory through the 

landscape. In the Random Walk, a solution candidate is 

randomly modified repeatedly. In the Adaptive Walk, a 

certain number of mutations are performed to generate a 

set of neighbours, and then the best one is selected from 

this set (Kauffman 1989). The Up-Down Walk is similar 

to the adaptive walk, but the direction of the walk is 

reversed when a local optimum is reached (Vassilev et 

al. 2000). Neutral Walks explore “flat” areas (Reidys 

and Stadler 1998). 

The statistical analysis proposed by Weinberger 

(1990), calculates the autocorrelation function in the 

random walk to measure the ruggedness of the 

landscape. In case of a high correlation between fitness 

values the landscape is considered less rugged. In the 

first step a time series of fitness values {ft}
N

t=1 is 

obtained in a landscape walk of N moves. Then, an 

autocorrelation function ρ(Γ) is calculated: 

 

  
     

 t

sttstt

fV

fEfEffE  
 , (2) 

 

where E(ft) the expectation and V(ft) is the variance of a 

sequence {ft}
N

t=1. For smooth landscapes the 

autocorrelation of a random walk is close to 1 and tends 

to zero for rugged (Reeves and Rowe 2002). Another 

statistical measure is correlation length, which defines a 

distance beyond which two sets of fitness points 

becomes uncorrelated. A longer correlation length 

indicates a smooth landscape. 

The information analysis interprets a fitness 

landscape as an ensemble of objects, which are 

characterized by their form, size and distribution. These 

objects consist of a point in the fitness landscape and 

the nearest neighbours of this point. The information 

analysis is based on the information theory, and four 

information measures are proposed by Vassilev et al. 
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(2000). The information content H(ε) is a measure of 

entropy in the system. In case of high information 

content, the landscape is more rugged. Partial 

information content M(ε) characterizes the modality of 

the obtained fitness string. The information stability ε* 

characterizes a magnitude of optimums in the obtained 

landscape fitness path. The density-basin information 

h(ε) analyses the variety of flat and smooth sections in 

the landscape. Information measures are calculated with 

notice to a calculation accuracy which is defined by a 

parameter ε, which defines a threshold of slopes in the 

fitness path (Vassilev et al. 2000). 

 

2.4. Problem Setup of the Simulation-based Fitness 

Landscape Analysis and Optimisation 

To extend the concept of the fitness landscape analysis 

for its application in simulation-based optimisation, the 

concepts of the simulation-based fitness landscape 

analysis are introduced in (Bolshakov 2013). The 

formal definition of the simulation fitness landscape Lʹ 

with an assumption that a simulation model provides 

real value output is:  

 

 Lʹ = (R, ϕ, S), (3) 

 

where R is a representation space, ϕ is a search operator 

and S is a simulation model with one output variable. 

To apply the fitness landscape analysis in the 

simulation optimisation, the following three-level 

formalised scheme is introduced (Bolshakov 2013) (see 

Fig. 1). At the benchmarking level, information on 

landscape measures and on the performance of the 

optimisation algorithms on benchmark landscapes is 

collected. At the landscape analysis level, the landscape 

analysis procedure is defined. The trajectory on the 

landscape is generated with different walking strategies, 

the time series of fitness values are obtained and 

landscape analysis measures are calculated by using 

statistical and information analysis techniques. The 

obtained collection of data is used to select and adjust 

an appropriate optimisation algorithm. At the 

optimisation level, the selected algorithm is used to 

optimise the investigated system by using the 

simulation-based metaheuristic optimisation approach. 

Landscape walk module LW can be interpreted 

as follows: 

 

 )ˆ,,(1 yxLWx tt 



, (4) 

 

where t is a number of completed walk iterations, 
1tx


 is 

a vector of simulation model input variables for a 

current iteration, 
tx


 are input variables at the previous 

iteration and ŷ is an output of a simulation model. 

Output of the landscape walk module is a vector x


 = 

(x1, x2,..., xk), x


 ∈ R. 

Simulation model S evaluates the performance of 

a system. Its output is estimated by ŷ = E[y], where 

y ∈ ℝ is simulation output in each replication and E[·] is 

the mathematical expectation. As a result of process 

integration of modules LW and S, a number of time 

series {ŷt}
N

t=1 are generated.  

The module of statistical and information 

analysis performs analysis of fitness values time series, 

and calculates the landscape statistical and information 

analysis measures. A set of measure values is obtained 

for different values of Γ and ε. 

The module of construction and tuning of an 

optimisation algorithm allows selecting the 

appropriate optimisation algorithm and adjust its 

parameters for optimisation of a complex system, which 

is simulated by S. Selection of the algorithm, its 

components and parameters is based on the data from 

simulation-based fitness landscape analysis and the data 

on benchmark landscapes. The module output defines 

the selected metaheuristic optimisation algorithm and 

its configuration: the representation R and a set Φ of 

search operators which form the optimisation algorithm. 

The selection of the algorithm and its configuration is 

based on the rules and recommendations which are 

applicable for known values of the landscape measures. 
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Figure 1: Simulation-based Optimisation with Fitness Landscape Analysis 
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At the optimisation level, the metaheuristic 

algorithm uses the representation method and a set Φ 

of suggested operators to optimise the problem. The 

termination condition determines whether the suitable 

solution is found. When the optimisation cycle is 

terminated, the best found solution ŷopt = yx ˆ,


 is 

selected. 

 

3. BENCHMARK FITNESS LANDSCAPE 

EXPERIMENTAL ANALYSIS 

 

3.1. Experimental Analysis of Benchmark 

Landscapes 

The following four fitness functions are widely used for 

benchmarking of genetic algorithms and were selected 

for estimating and analysing statistical and information 

measures of benchmark fitness landscapes. They are 

Sphere and Rosenbrock functions (De Jong 1975), 

Rastrigin function (Rastrigin 1974) and Ackley function 

(Ackley 1987). Experiments with the benchmark 

landscapes were performed with same number of 

variables and within a same search domain. Eight 

different fitness landscapes as a combination of four 

different benchmark functions and two types of 

representations are analysed. For a detailed analysis of 

benchmark fitness landscapes, a software prototype in 

Java was developed and applied. To estimate structural 

measures of these landscapes, three series of landscape 

analysis experiments were performed (Merkuryeva and 

Bolshakovs 2011). 

In the first series of experiments it was found that 

while correlation measures show dependence on the 

length of the path generated by a random walk, the 

behaviour of information content measures does not 

demonstrate this effect.  

In the second series of experiments, the 

autocorrelation for different benchmark landscapes and 

lags was defined for two types of solution 

representation. Correlograms obtained for real-value 

and binary coded benchmark landscapes show the 

higher autocorrelation for real-value coded fitness 

landscapes that make search processes easier in 

practice.  

In the third series of experiments, different 

information measures for all benchmark landscapes and 

different ε values were estimated. At ε = 0 information 

measures become almost identical and essentially do 

not provide a new information about structures of 

specific fitness landscapes. At the same time, smaller 

values of the information content for the Rosenbrock 

function compared to the Sphere indicate the higher 

degree of flatness with respect to rugged areas of the 

landscape (Merkuryeva and Bolshakovs 2011).  

 

3.2. GA Optimisation Experiments with Benchmark 

Fitness Functions 

To find the correlation between the results of fitness 

landscape analysis and hardness of a real problem for an 

evolutionary algorithm, a series of optimisation 

experiments were performed with benchmark 

landscapes (Merkuryeva and Bolshakovs 2011). GA 

with one point crossover and corresponding mutation 

operator was used to estimate a cumulative probability 

of success for different benchmark landscapes. The 

results of optimisation experiments show that in most 

cases, except for the Rosenbrock function, GA found 

solutions on real-value coded benchmark landscapes are 

better than on the binary ones that was predicted within 

the statistical analysis. As the autocorrelation between 

neighbourhood fitness points is high, it is easier for the 

genetic algorithm to move to a point with better fitness.  

 

4. SIMULATION-BASED FITNESS 

LANDSCAPE ANALYSIS 

 

4.1. Fitness Landscape Analysis Tool 

A procedure for the simulation-based fitness landscape 

analysis in a prototype of an analysis tool contains three 

following stages (see Fig. 2): 

 

 
Figure 2: Main Stages of Fitness Landscape Analysis 

 

The procedure is as follows. A developed Java 

application performs a random walk on the problem 

fitness landscape with application of mutation operator 

and produces a sequence   1t

Ntx


 of landscape path 

candidate solutions. The solutions are evaluated by 

simulation model of the analysed system in AnyLogic 

parameter variation experiment with different vectors 

of input parameters, which are defined in the obtained 

trajectory. As a result, the model generates an array of 

fitness values   1
ˆ

t

Nty . Finally, calculation of statistical 

and information fitness landscape measures is 

performed on a sequence of obtained fitness values.  

In statistical analysis, correlation length and values 

of autocorrelation function for different lags are 

calculated. In the information analysis at first a value of 

information stability ε* is determined. Then iterative 

calculations of information content, partial information 

content and density-basin information are performed for 

different values of ε within interval [0, ε*). 

Experimental data from several random walks is 

collected during analysis. As all random walks are 

started at different random positions, fitness landscape 

measures are obtained for a large part of the landscape. 

 

4.2. Case Study 

A case study of the vehicle scheduling problem with 

time windows (VSPTW) is considered in the research. 

Vehicles with various parameters deliver different types 

of goods from one distribution centre to various stores. 

A sequence of stores in a route, moving, loading and 

unloading times are defined for each trip. Delivery time 

windows and average demand are defined for each 

Generation of 

fitness landscape 

path solutions 

Simulation Statistical and 

informational analysis 

of fitness sequence 

AnyLogic 
  1t

Ntx
    1

ˆ
t

Nty  
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store. Vehicle capacities are limited and known. The 

problem is aimed at assigning vehicles to trips in order 

to minimise the total idle time of all vehicles, which is 

defined as a sum of time periods when a vehicle is 

waiting for the next trip. Vehicle scheduling problem 

(VSP) is frequently reviewed in the studies (Eiiyi et al. 

2008, Nagamochi and Ohnishi 2008). In practice, VSP 

can also be complicated by stochastic processes, and 

this is a reason to apply simulation optimisation to solve 

such problems. 

The following two sets of decision variables are 

introduced: vi and ti, where vi is a vehicle assigned and ti 

is a start time of the trip i. The problem constraints are 

vehicle capacity constraints and delivery time windows 

of stores. 

The objective function f is specified as follows:  

 

 min,540321

1




otolmc

N

i

i

idle NkNkTkTkTkTf  (5) 

 

where i

idleT  is the total idle time for vehicle i; N is a 

number of vehicles; Tc defines the total duration of 

overlapping trips for one vehicle; Tm defines the total 

time of window mismatches; To and Nol determine the 

total time and a number of vehicles that have overdone 

24 working hours; and Not is a number of vehicles that 

are overloaded. All indexes for unsatisfied constraints 

are multiplied with penalty coefficients ki. 

To determine the fitness of potential vehicle 

schedule solutions, discrete event simulation model in 

AnyLogic is developed (Merkuryeva and Bolshakovs 

2010). The simulation model evaluates the efficiency of 

a potential vehicle schedule by estimating the total idle 

time of all vehicles. To validate the model the existing 

schedule of a case study was simulated. In the 

experimental analysis, when the vehicle moving time 

between two route points was defined as a random 

variable with normal distribution it was determined that 

stochastic nature of the vehicle moving time has an 

impact on the vehicle idle time which grows with the 

growth of variance. At same time, a sum of all moving 

intervals for a vehicle is not affected by variance of 

moving times. 

To solve the vehicle scheduling problem with time 

windows, three optimisation scenarios are defined in the 

research: 

 

1. Optimisation in OptQuest optimisation tool. 

2. Simulation-based fitness landscape analysis 

and optimisation of the problem in the 

developed prototype. 

3. Fitness landscape analysis and optimisation of 

the problem in the HeuristicLab framework. 

 

As the simulation model of the vehicle schedule is 

developed in the AnyLogic software, optimisation tool 

OptQuest was applied. But, in experiments OptQuest 

was not able to obtain good solutions of the VSPTW, 

thus this scenario is not described in the paper.  

4.3. Problem Research with Developed Simulation-

based Tools 

In this scenario, the VSPTW is sequentially analysed by 

the simulation-based fitness landscape analysis tool 

prototype and optimised in simulation-based 

optimisation by tuned genetic algorithm. 

Here, solution of the VSP is encoded as an integer 

vector chromosome, which length is twice the number 

of trips. Genes with even numbers represent start times 

of corresponding trips, and odd genes define the 

assigned vehicle for this trip. To perform the random 

walk on the fitness landscape, a mutation operator is 

introduced that changes one randomly selected trip in 

the solution candidate. For the selected trip a new 

randomly chosen vehicle is assigned, and start time is 

shifted by a certain constant value.  

Information and statistical measures of the 

VSPTW fitness landscapes with stochastic and 

deterministic input data received in experiments are 

given in Table 1.  

Information measures demonstrate that the 

landscape of problem with stochastic data has higher 

entropy and should have higher modality. According to 

the landscape measures, problem with stochastic data 

should be more complex for the optimisation algorithm 

as values of autocorrelation function between neighbour 

solutions ρ(1) are lower. 

In both cases the information content is relatively 

high, and fitness landscape of the optimisation problem 

is relatively rugged. The partial information content is 

low, and as a result, the modality of fitness landscape is 

low. The results of the fitness landscape analysis lead to 

a conclusion that the case study problem is not hard for 

evolutionary algorithms. Comparative analysis shows 

that landscape of VSPTW is less rugged than 

landscapes of benchmark fitness functions whose 

solutions are coded in binary chromosomes. Thus the 

analysed problem could be solved with the GA no 

worse, than mentioned benchmark problems. 

 

 Table 1: Information and Statistical Measures 
Model 

input data 

H(0.1) M(0.1) h(0.1) ε* ρ(1) ρ(10) τ 

Stochastic 0.66 0.20 0.49 0.40 0.84 0.21 7.24 
Deterministic 0.62 0.17 0.37 0.35 0.89 0.32 8.75 

 

In the simulation optimisation, the GA is applied. 

The optimisation tool is implemented as a Java class, 

which interacts with the simulation model via 

‘Parameter variation’ experiment in AnyLogic. In 

experiments with population size 200, one point 

crossover operator for data encoded in real numbers and 

a described mutation operator the best found solution 

allowed decreasing the total idle time comparing with 

the original schedule. 

In series of optimisation experiments, simulation 

model with deterministic data is used and termination 

condition is set to occur when a large number of 

generations are generated without improvement of the 

best solution in the population. Genetic operators are 
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customized for operating with the proposed structure of 

the chromosome: one point crossover operator for real 

vectors and above described mutation operator are 

applied. As fitness evaluation with simulation is time 

consuming, caching of fitness values is applied. If the 

solution was already evaluated its fitness value can be 

returned without simulation from an array of stored 

fitness values. Optimisation results show that a solution 

which satisfies all constraints can be found. Acceptable 

results are obtained with the population size higher than 

1000 chromosomes (Merkuryeva and Bolshakov 

2012a). But the optimisation algorithm needs 

improvements, as many found solutions of large 

dimension instances do not satisfy part of soft 

constraints 

 

4.4. Fitness Landscape Analysis and Optimisation in 

HeuristicLab 

To perform a faster and more comprehensive analysis, 

the simulation model was reimplemented as a plug-in of 

HeuristicLab (Wagner 2009) maintaining all its logic. 

To enhance the quality of optimisation results, 

permutation encoding for the VSP solutions is 

introduced. A chromosome contains m + n genes, where 

n is a number of vehicles and m is a number of trips. 

The genes that have values less or equal to m encode the 

trip number and values greater than m encode delimiters 

or vehicle designators, and define, that the next 

sequence of trips should be performed by the 

corresponding vehicle (Bolshakov et al. 2011).  

A grid of the landscape analysis experiments is 

created to compare values between different landscapes: 

  

1. Comparison of different mutation operators. 

2. Impact measurements of stochastic variables 

during simulation. 

3. Comparison between existing and proposed 

encodings. 

 

Full results of comprehensive analysis experiments 

are presented in Bolshakov et al. (2011). For the integer 

vector representation, fitness landscapes of two 

operators are analysed. The single position replacement 

manipulator (VSPManipulator) changes the start time of 

the trip to a new uniformly distributed random number, 

but the single position shift manipulator 

(VSPShiftManipulator) shifts the start time with a 

uniformly distributed random number. In random walk, 

values of autocorrelation function are slightly lower for 

the replacement operator. In up-down walk the situation 

is the opposite: replacement mutation has higher 

correlation than shift mutation, but the three artificial 

problems are different to the others (see Fig. 3; black 

dots are for replacement and green for shift mutator). It 

can be concluded that for VSPs that the main impact on 

the local landscape structures has a number and variety 

of trips. 

The plug-in was supplemented with additional 

logic to estimate the affect of simulation model’s 

stochastic variables on the landscape measures. In 

following series of experiments vehicle movement 

times between customers are shifted by a random 

number that has symmetric triangle distribution in the 

interval [-20, +20] minutes. The autocorrelation value 

ρ(1) is lower for landscapes of noisy problems in these 

experiments. The addition of similar noise has different 

impact on different instances, which can be measured 

by H(0) or M(0) in random walks, which values are 

higher for landscapes with noise. It is determined in 

experiments, that higher number of replication reduces 

the impact of the noise on the information measures, 

although no significant difference of correlation length 

and autocorrelation values between different numbers of 

replications was found. The information content’s H(0) 

value is higher for the problem instances with additional 

noise, especially when only one replication is used. 

 

 
Figure 3: Autocorrelation in Up-Down Walks 

 

To compare the fitness landscape analysis 

measures between different VSP representations, 

experiments for each encoding are performed. The 

value of the autocorrelation function in random and up-

down walks is lower for the permutation encoding, 

which means that landscapes of this encoding should be 

more rugged.  

Evolution Strategy (ES), Simulated Annealing 

(SA) and Genetic Algorithm were applied in the 

comparison of VSP optimisation results. For integer 

encoding, both ES and SA algorithms are fast and 

highly successful, and it is possible to find solutions 

with better quality with ES (Fig. 4). GA finds even 

better solutions, but requires a higher number of 

evaluations. The permutation encoding is found to be 

more effective in optimisation of the VSP, as it reduces 

the search space, even though the fitness landscape for 

the permutation encoding has to be more rugged. 

Although it is also found, that for large dimension 

instances factor of landscape ruggedness dominates the 

reduction of the size of search space. 

 

 

 
Figure 4: Quality of Best Found Solutions with ES 
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It is experimentally found that the statistical 

analysis can predict the performance of these operators. 

For the GA instances, where the shift operator is better, 

the autocorrelation for this operator also is higher (Fig. 

3 and 4; black dots are for replacement and green for 

shift mutator). The same dependency was also found for 

the ES algorithm.  

It is concluded, that optimisation using the ES is 

the best choice for the solution of the vehicle scheduling 

problem with time windows. If the GA is selected as the 

optimisation algorithm, permutation encoding has to be 

chosen unless the problem contains more than 100 trips. 

In the integer vector encoding, selection of the 

appropriate mutation operator is based on the landscape 

analysis measures: an operator, which has the highest 

autocorrelation value in the up-down walk, should be 

selected. 

 

5. APPLICATION IN PRODUCT DELIVERY 

PLANNING 

Two combined optimisation tasks of the integrated 

delivery planning proposed in Merkuryeva and 

Bolshakov (2012b) are solved in this section. General 

task is the determination of the best routes and schedule 

for the vehicles to deliver goods from a distribution 

centre to the stores. Optimal distribution of routes and 

vehicles should minimise a number of used vehicles, 

total delivery distances, with minimisation of vehicle 

idle times. The route and schedule plan must fulfil the 

constraints, such as capacities of vehicles, time 

windows and warehouse capabilities. For the solution of 

this task, two optimisation problems are solved 

sequentially. First task is solved as a vehicle routing 

problem with time windows. For the second task a route 

scheduling problem statement is defined that aims 

optimisation of a schedule of predefined routes. 

 

5.1. Vehicle Routing Experiments 

The classical flow-based vehicle routing problem’s with 

time windows (VRTPW) statement (Cordeau et al. 

2001) was applied in the research. All optimisation 

experiments were performed with application of the 

Island Offspring Selection Genetic Algorithm 

(Affenzeller et al. 2009), which is a special type of 

genetic algorithm that combines features of coarse-

grained parallel GA and GA with offspring selection. 

Experiments were performed with HeuristicLab 

optimisation framework (Wagner 2009). A GVR 

crossover was selected as best for the VRPTWs of the 

case study, as it works with an unlimited number of 

vehicles, but provides best results in terms of keeping 

routes not overloaded.  

It was found for the considered case, that in best 

found solutions many routes are 1 to 3 customers long. 

A number of stores is limited due to the small capacity 

of the vehicles, and not because of short time windows. 

 

5.2. Vehicle Route Scheduling Problem Statement 

It is assumed in the definition of the classical VRPTW, 

that any vehicle may perform only one route in the 

planning horizon. In the investigated business case, all 

routes are shortened by the capacity of vehicles, which 

leads to the ineffective solutions of the vehicle routing 

problem. To overcome these obstacles, the route 

scheduling problem is introduced. It can be formulated 

on a basis of the VSPTW. In the formulated problem, 

the routes correspond to the trips in the VSPTW and 

vehicles may perform any fair number of routes during 

the day. As far as the final solution of the VRPTW task 

should be feasible for the capacity and time window 

constraints, it can be optimised by combining and 

compacting routes to increase a vehicle utilisation. 

Application of the vehicle scheduling for the solution of 

vehicle routing problem allows reducing a number of 

required vehicles.  

A full formal statement of the route scheduling 

problem is described in (Merkuryeva and Bolshakov 

2012b). The decision variables are ones introduced in 

the routing model (Cordeau et al. 2001), i.e., sets x and 

s, except that xijk = 1 states that for vehicle k route j will 

be the next after route i. Two types of soft constraints 

are introduced: 1) time window constraints; 2) overtime 

constraints. A fitness function f of the route scheduling 

problem summarizes all idle times and a number of 

constraint violations multiplied by penalty values: 

 

 min,


ototadad

Vk

k NpNplf  (6) 

 

where lk is the total idle time of a vehicle k; V is a set of 

available vehicles; Nad is a number of vehicles, which 

leave customer after due time; Not is a number of 

vehicles, which are scheduled to work with overtime; 

pad and pot are the penalty values for late deliveries and 

vehicle overtimes, correspondingly. 

 

5.3. Vehicle Route Scheduling Experiments 

To resolve the vehicle route scheduling problem, a 

plug-in in HeuristicLab optimisation framework is 

developed. In the plug-in, fitness function (6) evaluator 

simulates a schedule of a solution candidate. A 

permutation encoding of the VSPTW is applied for the 

route scheduling, but the trips here are represented by 

the routes. 

 Several series of optimisation experiments were 

performed to determine a suitable algorithm for the 

route scheduling and numbers of solution evaluations to 

obtain candidate solutions of the equal fitness are 

compared. Following algorithms were examined: ES, 

GA, Island GA with 5 islands and Offspring Selection 

GA (Affenzeller et al. 2009). The ES was chosen as 

most suitable, for its ability to provide the best found 

optimal results of the route scheduling with fewer 

evaluations (Merkuryeva and Bolshakov 2012b).  

A sample experiment based on one day plan and 

specific demand data for 53 stores is described. The best 

found solution obtained by the IOSGA for the VRPTW 

defines 34 routes (Fig. 5). Here, it is possible to 

combine these routes due to the long time windows. 

The ES (20+100) algorithm was applied for the route 
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scheduling problem which input data is based on the 

considered VRPTW solution. As a result, the optimal 

scheduling solutions were found with all constraints 

satisfied if at least 6 vehicles are available (see Fig. 5).  

 

          

Figure 5: VRPTW and Scheduling Solution of Sample 

Instance 

 

The proposed vehicle scheduling method that 

complements vehicle routing can be applied in the 

vehicle routing and scheduling, when routes are short in 

comparison with a planning horizon. 

 

6. RESULTS AND CONCLUSIONS 

Review of formal definitions of fitness landscape and 

its structures, with the review of fitness landscape 

analysis methods allowed development of the formal 

scheme for the simulation-based optimisation, enhanced 

with the fitness landscape analysis. Experimental fitness 

landscape analysis of benchmark landscapes allowed 

finding the relations and dependencies between 

structural features of benchmark fitness landscapes, 

their measures and behaviour of optimisation algorithm 

on these landscapes.  

The developed simulation-based fitness landscape 

analysis procedure allowed implementation of a 

software tool prototype for fitness landscape analysis. 

Application of this tool provided analysis of the vehicle 

scheduling problem with time windows in simulation-

based optimisation. The comprehensive experimental 

fitness landscape analysis of this problem allowed 

determination of problem specific properties and 

internal characteristics of problem’s fitness landscape, 

which, provided development of recommendations for 

optimisation scenarios of the vehicle scheduling 

problem with time windows. Experimental results show 

that it is possible to use fitness landscape analysis for 

enhanced optimization of applied problems, but with 

notice to the stochastic data of simulation optimisation. 

The developed methods were applied in the 

solution of delivery planning operational level 

optimisation tasks, which allowed improving the overall 

solutions of vehicle routing and scheduling problem 

with time windows. 
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