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Abstract. Operational risk is one of the core risks of every insurance company under the 

Solvency II framework and can be defined as the financial losses occurred due to 

incorrectly defined systems or processes; failures in IT system, human mistakes or other 

external processes. The research is performed in order to assess the capital to cover 

possible losses due to the occurrence of the operational risk sub-risks and nature of an 

operational risk. We have shown that operational risks can be modelled by skew t-copula 

and estimated tail dependence in each situation for modelling distributions with heavier 

tail area. The model is prepared on a non-life insurance company’s example and is based 

on the recorded data from loss database that encompasses historical information of five 

main operational sub-risks: legal, informational, organizational, human resources and 

expense risk.  

Keywords: Operational risk, skew t-copula, t-copula, tail dependence, modelling, 

solvency capital, insurance. 
 

1 Introduction 
 

The fact is that the requirements of the Solvency II Directive are not just about 

capital of an insurance company but about risk assessment through the 

implementation and enhancement of risk measurement and risk management.  

Also, the Solvency II regime requires higher capital compared with the 

requirements of the Solvency I Directive that should ensure the solvency and 

financial stability of each insurance company. Moreover, the new requirements 

of the Solvency II Directive, which will come in force from 1st January 2016, 

set a lot of challenges to every insurance company in the European Union 

member states in relation to the establishment of more sensitive and 

sophisticated risk coverage in order to ensure solvency and the safety of 

policyholders. Based on the requirements of the Solvency II Directive, the 
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insurance companies should hold the appropriate amount of capital that could 

ensure safety of policyholders and beneficiaries. The target of this research is to 

study the improvement possibilities of the operational risk measurement under 

the Solvency II regime. The object of this paper is measurement of operational 

risk. Operational risk is the change in value of capital needed caused by the fact 

that actual losses, incurred from inadequate or failed internal processes, people 

and systems, or from external events, including legal risk but excluding strategic 

and reputational risks Since 2001, when document about operational risks 

Sound Practices for the Management and Supervision of Operational Risk was 

published by Basel Committee on  Banking Supervision [2] operational risk has 

been in the centre of interest of mathematicians. Because needed capital for 

different risks in banks is estimated by risk measure VaR (what is 99.9% in 

banks and 99.5% in insurance), it seems natural to use the same measure for 

operational risk too. But the problem is that VaR measure is not a coherent risk 

measure: 

1 1

( ) ( )

n n

i i

i i

VaR R VaR R 

 

  , where iR , {1,2,..., }i n  are different 

risks. Therefore, different bounds for VaR of a portfolio of risks can be found in 

Chavez-Demoulin et al. [5] or improved bounds in Embrechts and Puccetti [10]. 

Further different copulas (Gumbel, Gaussian) were used for analysis of risk 

across a non-symmetric matrix of loss data in Embrechts and Puccetti [11]. 

Extreme value theory was used to evaluate operational risks in El-Gamal et al. 

[9], Chavez-Demoulin et al. [6]. Our aim in this paper is to show that skew t-

copula can be used to estimate VaR of portfolio of different operational risks 

including confidence intervals for such as risk measure like VaR and finally 

calculate estimates of tail dependence for risks and for portfolio. We have 

worked out our methodology using data basis of recorded operational risks 

during one year in one insurance company of Latvia. 

 

2 Construction of skew t-copula 
 

We are going to model the joint distribution of different risks via skew t-copula 

to show advantage of the last one. Usually operational risk data have univariate 

marginals with skewed distributions of different types. To construct a 

multivariate model with certain dependence structure and different marginals 

copula theory has been the only tool at hand so far. But most of the suggested 

copulas are symmetric. To join skewed marginals into a multivariate distribution 

it seems more natural to use a skewed multivariate distribution. There exist 

many different modifications and extensions of the standard multivariate t-

distribution. An overview of these distributions is given in Kotz and Nadarajah 

[15], Ch. 5. We have constructed skew t-copula based on the multivariate t-

distribution and skew t-distribution introduced in Azzalini and Capitanio [1] and 

corresponding copulas constructed using these distributions.  Notation ,pt   is 

used when we talk about density of the p -variate t -distribution with   degrees 
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of freedom and notation ,pg   is used for the density of the p -variate skew t -

distribution with   degrees of freedom. Similar notations are used for the 

distribution functions.  

DEFINITION 1. A p-dimensional random vector  1( ,..., )T
pX XX  is said to 

have p-variate t-distribution with   degrees of freedom, mean vector μ  and 

positive definite matrix Σ , if its density function is given by (Azzalini and 

Capitanio [1]): 

1 2

,
1

2 2

( ) ( )2
( , , ) 1

( )
2

p

T

p p

p

t















 
       

  
 
 

x μ Σ x μ
x μ Σ

Σ

.              (1) 

Next we give the definition of the p-dimensional skew ,pt  -distribution 

(Azzalini and Capitanio [1]). 

DEFINITION 2. A random p-vector 1( ,..., )T
pX XX  has p-variate skew t -

distribution with parameters μ , α   and Σ  , if its density function is of the form 

1

2
1

, , 1,( ; , , ) 2 ( ; , ) ( )T

p p p

p
g t T

Q
  









 
         

  

x μ Σ α x μ Σ α W x μ     ,           (2) 

where Q  denotes the quadratic form 

1( ) ( )TQ   x μ Σ x μ  

and W  is the p p  diagonal matrix ( )ij ij W , , 1,...,i j p , where ij  is 

the Kronecker delta. 1, ( )pT     denotes the distribution function of the central 

univariate t - distribution with p  degrees of freedom. 

The skew t-copula is introduced in Kollo and Pettere [13]. As marginal 

distributions of the business lines are skewed, a skewed copula will be a natural 

model to give a good fit with the data.  

DEFINITION 3. A copula ,pC   is called skew ,pt  -copula with 

parameters μ ,Σ , α , if 

1 1
, 1 , , 1 1 11 1 ,( ,..., : , , ) ( ( ; , , ),..., ( ; , , ), , , )p p p p p p p pp pC u u G G u G u         μ Σ α μ Σ α

where 1
, ( ; , , )p i i ii iG u    , {1,2,..., }i p  denotes the inverse of the univariate 

skew ,pt  -distribution function and ,pG  is the distribution function of p-

variate skew ,pt  -distribution with density (2). 

The corresponding copula density function is 
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1

1 1
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 






μ Σ α
u μ Σ α   

where the density function , ( ; , , )pg   μ Σ α :
p

R R  is defined by (2) and 

function 
1

1, ;( , , )i ii ii
G u   


 is as in Definition 3. 

We are going to apply the skew t-copula in a special case when the shift 

parameter μ 0 . To find a model for our data we have to estimate the 

parameters Σ  and α . For that, we shall apply the method of moments. 

Parameters Σ  and α  are estimated from the first two sample moments (Kollo 

and Pettere [13]). Let X  and XS  denote the sample mean and the sample 

covariance matrix, respectively. Then the estimates are 

 

2
ˆ ( )

T




 XΣ S XX                                         (3) 

   

2 1

( )
ˆ

ˆ( )
T

b
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









β
α

X Σ X
 ,                                      (4) 

where 

11
ˆ ˆ

( )b 


β WΣ X ,                                        (5) 

 

with ˆ ˆ( )ij ij W , , 1, ...,i j p , where ij  is the Kronecker delta and 

1

2

1
( )

2( )

( )
2

b











 



 
  

. 

 

We have to assume in formula (4) that 2.    

Variable   is possible to estimate between every two variables using formula 

from Kotz and Nadarajah [15]: 

 

2

4 1 4 23 ( 2)( 4)( ( ) ( )) 0m X m X                        (6) 
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where 4 ( )im X  denotes the sample estimate of the fourth order moments of 

random variable iX  , {1,2}i . The estimates are closest integers to the 

solution of equation (6) and can be found for 4  . 

 

3 Tail dependence for skew t–distribution 
 

Let us assume that 
1 2( , )X X  is a two-dimensional vector with univariate 

marginal distributions functions 
1( )F x  and 

2 ( )F x . Then the upper tail 

dependence coefficient is  

1
lim ( )U U
u

u 


  

where 1 2( ) ( ( ) / ( ) )U u P F x u F x u    .  

Similarly is defined the lower tail dependence coefficient 

1
lim ( )L L
u

u 


  

where 1 2( ) ( ( ) / ( ) )L u P F x u F x u    .  

For symmetric elliptical distributions
 U L    , for normal distributions   

equals zero. For two-dimensional t-distribution with   degrees of freedom 

                          1,

( 1) (1 )
2

( 1)
T 

 




   
    

                                                  (7) 

where 1, (.)T   is the distribution function of standard t-distribution with   

degrees of freedom (see Demarta and McNeil [7])  

It is proved in Bortot [3] that it is sufficient to study the upper tail dependence 

as the lower tail dependence coefficient is determined by the upper one. To 

follow Bortot [3] let us denote by 

* 1 2
1

2 2

21 (1 )

  


 

 


  
  and * 2 1

2
2 2

11 (1 )

  


 

 


  
                           (8) 

Assume that * *

1 2   . Then 
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or 
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In the case of 
1 2     the tail dependence coefficient can be calculated 

using formula: 

1, 2

*

1, 1

( 2) ( 1)
2

2

( 1)
U

T

T





 


 
 





   
   

  
 

 

where *

2 2

(1 )

1 (1 )

 


 

 


  
 . 

 

The fact is that the difference of tail dependencies between t-distribution and 

skew t-distribution is determined by the ratio of univariate distribution functions 

of the t-distribution. It is shown in Bortot [3] that for the equal values of   the 

difference in tail dependence is not large. 

 

4 Description of the model and data 
 

The simulation model performed during the case study is based on five risks, 

but it can be used for any number of risks. The model includes the following 

operational sub-risks: 

 Legal risk (LR) means the possibility that lawsuits, adverse judgments 

from courts, or contracts that turn out to be unenforceable, disrupt or 

adversely affect the operations or condition of an insurer. The result 

may lead to unplanned additional payments to policyholders or that 

contracts are settled on an unfavorable basis, e.g. unrecoverable 

reinsurance.  

 Organizational risk (OR) means possible losses due to unclear 

organizational structure (unclear processes, unclear responsibilities 

split between units etc.). 

 Informational risk (IR) means possible losses due to failures in the IT 

system.  

 Human Resources risk (HRR) means losses due to changes or loss of 

personnel, deterioration of morale, inadequate development of human 

resources, inappropriate working schedule, inappropriate working and 

safety environment, inequality or inequity in human resource 

management or discriminatory conduct. 

 Expense risk (ER). The risk of a change in value caused by the fact that 

the timing and/or the amount of expenses incurred differs from those 

expected, e.g. assumed for pricing basis. 

The historical data is based on recorded data in relation to the five risk sub-risks 

of operational risk from the annual loss database. The loss database introduces 
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all incurred operational risk events with details about losses during a particular 

period and is important aspect of the understanding of interconnectivity of 

different operational sub-risks; thus is a prerequisite to controlling problems and 

assessing practices. 

Basically, the model is based on several main steps: 

1) data collection, 

2) determination of a marginal distribution of each operational sub-risk, 

3) simulation of 10 000 values of each risk  using skew t-copula,  

4) calculating VaR of each marginal,  

5) finding VaR for total portfolio of operational risk, 

6) repeating 30 times steps 3 to 5 and calculating descriptive statistics. 

Descriptive statistics of the marginal distributions of the above-mentioned risks 

are presented in Table 1.  

 

Table 1. Descriptive statistics of used data. 

 

All operational risks are skewed, but the largest maximum value has 

organizational risk. Risk with so large maximal value was chosen specially to 

check does model fit in such case too. Before fitting marginal distributions, the 

data were standardised and only then, the marginal distributions were 

approximated by exponential, gamma and normal distributions.  

The testing results are shown in Table 2. 

 

Table 2. Results of testing.  

Risks LR OR IR HRR ER 

Sample size 12 12 12 12 12 

Mean 7 564 45 618 5 425 1 747 2 308 

Median 3 700 1 610 960 18 0 

Standard deviation 11 151 143 207 9 342 4 490 6 655 

Largest value 41 278 500 010 31 010 15 001 43 000 

Skewness 2.92 3.45 2.21 2.82 3.24 

Risks Distribution used Parameters Test value 

LR Exponential   1.474 0.164 

OR Gamma   0.101  

0.169   3.139 

IR Gamma   0.227  

0.096   2.098 

HRR Gamma   0.152  

0.338   2.569 

ER Normal    3.352  

0.079    1.000 
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Correlation matrix between risks (order of risks from left to right and from up to 

down is LR, OR, IR, HRR and ER) is the following: 

1 0.143 0.357 0.183 0.071

0.143 1 0.118 0.135 0.085

0.357 0.118 1 0.086 0.132

0.183 0.135 0.086 1 0.063

0.071 0.085 0.132 0.063 1

R



   

   

  

  

 
 
 
 
 
 
 

 

One can see that smallest correlations are between LR and ER (0.071) and HRR 

and ER (-0.063). 

Estimations of parameters were started by estimating degrees of freedom   

between each two pairs of variables by using formula (6) (see Table 3.) 

 

Table 3. Estimated values of   by formula (6). 

i OR IR HRR Ex 

LR 1.839313 1.816586 1.820098 1.833699 

OR 

 

1.831101 1.834072 1.845673 

IR 

  

1.809678 1.824871 

HRR 

   

1.828069 

 

Nearest possible integer in all cases are 2. Formula (6) is right only if 4   

and skew t-copula is possible to use from 2   . In our case formula (4) is 

possible to use only with 5   and therefore we have chosen 5  . 

Further parameters for copula were estimated using formulas (3), (4) and (5). 

The obtained Σ̂  matrix is: 

0.876 0.044 0.408 0.268 0.186

0.044 0.661 0.020 0.007 0.016

ˆ 0.408 0.020 0.736 0.060 0.022

0.268 0.007 0.060 0.691 0.044

0.186 0.016 0.022 0.044 0.674

 
 

 
 
 

 
 
 

Σ  

Estimated values of vector α  are   

(1.675 1.657 1.518 1.394 1.408) .T α  

The simulation is based on the simulation rule for the skew ,pt  -distribution  

(Kollo and Pettere [13]): 

1. Find the Cholesky decomposition A  of X
S , ( T  XAA S ). 

2. Simulate p independent values from N(0,1) and form p-vector z . 

3. Set vector  x A z . 

4. Simulate value w  from N(0,1). 
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5. Get realization of the skew normal vector y  putting 

.

T

T

if w

if w

 
 

 

x α x
y

x α x  

6. Simulate 2h  . 

7. Find vector 
/h 


y

t . 

8. Set vector u  so that every coordinate 1, ( ;0, , )i i ii iu G t   , 

[1,..., ]i p . 

9. Set vector 1 1

1 1( ( ),..., ( ))p pF u F u x  where ( )iF   is the marginal 

distribution function of the initial random variable iX . 

10. Repeat previous steps 10 000 times. 

 

5 Results 
 

Based on the performed simulations, it is possible to conclude that the obtained 

portfolio VaR by simulations is smaller than sum of VaR for different risks and 

it means that the necessary capital to cover these risks is less by 10.3%. The 

main findings and results of simulation are in Table 4 and Table 5. In order to 

understand the information presented in Table 4, the explanation of some values 

are provided:  

 The first line presents the 99.5% VaR for each sub-risk using inverse 

marginal distributions.  

 The next lines present characteristics of 99.5% VaR for each sub-risk 

and portfolio obtained from simulations. 

 

Table 4. 99.5% VaR of separate risks obtained using simulations and its 

characteristics. 

 

Risks LR OR IR HRR ER 

99.5% VaR from 

distributions 40 078 947 292 55 567 28 530 19 450 

Mean of 99.5% 

VaR 39 980 882 287 53 803 27 247 18 936 

Median 39 891 875 210 53 560 27 414 18 992 

Standard 

deviation 908 50 990 1 700 1 395 224 

Skewness 0.426 0.923 0.591 -0.023 -0.921 

Coefficient of 

variation (%) 2.27 5.78 3.15 5.12 1.18 
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The same characteristics for portfolio of risks as for each risk in Table 4 are 

shown in Table 5. 

 

Table 5. 99.5% VaR of portfolio obtained using simulations and its 

characteristics. 

 Sum of VaR Portfolio  VaR 

99.5% VaR from 

distributions 1 090 917  

Mean of 99.5% VaR 1 022 333 916 576 

Median 1 015 070 910 795 

Standard deviation 50569 44 408 

Skewness 0.938 0.937 

Coefficient of variation 

(%) 4.95 4.84 

 

Results in Table 4 and in Table 5 show us that simulation results from the skew 

t-copula are stable. Medians are close to means, skewness coefficients and 

variation coefficients are not large. Therefore, it is possible to assume 

approximate normal distribution of simulated mean and to calculate confidence 

intervals for portfolio VaR. Estimated confidence intervals for portfolio VaR are 

shown in Table 6. 

Additionally it is possible to see from Table 5 that gain of using copula 

approach is EUR 105 757 or 10% decreasing in capital needed. 

  

Table 6. Confidence interval of portfolio VaR. 

Confidence probability Portfolio VaR Lower limit Upper limit 

99.5% 916 576 895 693 937 459 

 

Calculated limits of confidence intervals show us that even upper limit for 99.5 

% confidence is lower than portfolio VaR obtained simply by adding different 

risk VaR. The tail dependence coefficient calculations for given risks using 

formulas (7), (8) and (9) are presented in Table 7 and in Table 8. Like it is 

possible to see from Table 7 and Table 8, tail dependence coefficients are not 

large but tail dependence exists. 

 

Table 7. Tail dependence coefficients between LR and other risks. 

Risks LR – OR LR – IR LR – HRR LR – ER 

  0.0183 0.0762 0.0486 0.0357 
*

1  0.7489 1.2772 1.1372 1.0294 
*

2  0.7324 1.1389 0.8822 0.7841 

1, 2T    0,9996 0.9998 0.9997 0.9997 

1, 1T    0.9385 0.9385 0.9385 0.9385 

U  0.0196 0.0812 0.0518 0.0380 
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Table 8. Tail dependence coefficients between other risks. 

Risks OR – IR OR – HRR OR – ER 

U  0.0215 0.0213 0.0241 

Risks  IR – HRR IR – ER 

U   0.0238 0.0206 

Risks   HRR – ER 

U    0.0252 

 

There is no possibility to calculate in direct way tail dependence for skew t-

distribution because in formula (9) is not the equality sign. Unique what is 

possible to do is to estimate tail dependence coefficients between each two risks 

using formula (9) and to have in mind that in reality it can be slightly larger. It is 

shown in Kollo et al. [14] that the upper tail dependence coefficient for skew t-

copula differs not much when skewness parameters have the same sign and 

when one of them has positive and another negative value, then skew t-copula 

can have much bigger tail dependence coefficient than the corresponding t-

copula. Because skewness parameters, which are presented by vector, α  are 

with same sign and close to each other, we can conclude that at least in this case 

tail dependence does not differ much from the calculated values. 

 

Conclusions 
 

Risk dynamic nature in the changing market conditions sets a lot of challenges 

to every company. Thus, it is necessary to implement new approaches to follow 

the nature of risks with the aim to understand their possible impact on financial 

stability and further development. Under Solvency II regime insurance 

companies like banks will need to evaluate necessary capital to cover different 

risks. The largest problem can be to evaluate operational risks because of lack of 

data. For that reason, many different methods are created to evaluate operational 

risks. Many methods are based on expert evaluations (see, for example, Durfee 

and Tselykh [8], Jonek-Kowalska [12] and Stepcenko and Voronova [17]). 

However, from another side it is very natural to evaluate operational risks by 

using statistical methods like all other insurance and banking risks. For that is 

necessary to record very carefully losses in each company. If such data basis 

exists, we have shown that needed capital for operational risks can be evaluated 

by different statistical methods. Many new books have appeared in latest years 

about evaluation of operational risks. Latest books, for example, are Cavestany 

et al. [4] and McConnell [16]. Privilege of that paper is using skew t-copula 

modelling necessary capital to cover operational risks. 

Advantages of the proposed method are:  

• the skew t-copula has a very simple simulation rule,  

• by choosing degrees of freedom is possible to find appropriate 

skewness of copula for simulation,  
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• possibility to calculate average measure of necessary characterstics,  

• possibility to estimate sensitivity of calculated measure, 

• possibility to calculate confidence interval of portfolio value at risk, 

• tail dependence can be evaluated between risks. 
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